33 research outputs found

    Is Neurodegenerative Disease a Long-Latency Response to Early-Life Genotoxin Exposure?

    Get PDF
    Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, a disappearing neurodegenerative disease linked to use of the neurotoxic cycad plant for food and/or medicine, is intensively studied because the neuropathology (tauopathy) is similar to that of Alzheimer’s disease. Cycads contain neurotoxic and genotoxic principles, notably cycasin and methylazoxymethanol, the latter sharing chemical relations with nitrosamines, which are derived from nitrates and nitrites in preserved meats and fertilizers, and also used in the rubber and leather industries. This review includes new data that influence understanding of the neurobiological actions of cycad and related genotoxins and the putative mechanisms by which they might trigger neurodegenerative disease

    The Cycad Genotoxin MAM Modulates Brain Cellular Pathways Involved in Neurodegenerative Disease and Cancer in a DNA Damage-Linked Manner

    Get PDF
    Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O6-methyldeoxyguanosine lesions, O6-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O6-mG DNA methyltransferase (MGMT) showed elevated O6-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease

    Diagnostic d'anomalies chromosomiques chez les jumeaux, mosaïques et chimères (à propos d'un cas et revue de la littérature)

    No full text
    Deux jumelles de phénotypes discordants, H. normale et J. anormale, présentent toutes les deux une duplication directe 11p en mosaïque concernant un 1/5 de leurs lymphocytes sanguins. La discordance phénotypique a motivé des explorations complémentaires en cytogénétique moléculaire où des cellules du frottis jugal et du sédiment urinaire ont été analysées. Deux tiers des cellules de J. présentent une trisomie 11p alors qu'aucune cellule anormale n'a été retrouvée chez H. Le phénotype paraît donc particulièrement corrélé à la répartition des cellules au niveau des tissus somatiques autres que le sang. La mosaïque retrouvée au niveau du sang des deux jumelles est probablement due à des échanges sanguins in utero entre les deux circulations foetales par l'intermédiaire d'anastomoses placentaires. La transfusion foeto-foetale in utero entre jumeaux peut être à l'origine de mosaïques et de chimères. Ces deux phénomènes peuvent être source d'erreurs au cours du diagnostic cytogénétique.TOULOUSE3-BU Santé-Centrale (315552105) / SudocTOULOUSE3-BU Santé-Allées (315552109) / SudocSudocFranceF

    Lithium down-regulates tau in cultured cortical neurons: a possible mechanism of neuroprotection.

    No full text
    ERMAInternational audienceIn tauopathies such as Alzheimer's disease (AD), the moleccular mechanisms of tau protein agregation into neurofibrillary tangles (NFTs) and their contribution to neurodegeneration are not fully understood. Recent studies indirectly demonstrated that tau, regardless of its aggregation, might represent a key mediator of neurodegeneration, especially that induced by the amyloid (Abeta) pathology. Lithium is a medication for bipolar mood disorders. Its therapeutic mechanism of action remains unclear, in part because of the large number of biochemical effects attributed to lithium. Since lithium directly inhibits glycogen synthase kinase-3beta (GSK3beta), a key enzyme involved in tau phosphorylation, it was suggested that the therapeutic use of lithium could be expanded from mood disorders to neurodegenerative conditions. Lithium has been also reported to protect cultured neurons against Abeta toxicity, and to prevent NFTs accumulation and cognitive impairments in transgenic models of tauopathies. However, the exact mechanism of neuroprotection provided by lithium remains unknown. Here, we show that exposure of cultured cortical neurons to lithium decreased tau protein levels. This decrease was not linked to the activation of proteolytic processes including calpains, caspases and proteasome or to neuronal loss, but was rather associated with a reduction in tau mRNA levels. Moreover, prior exposure to lithium, at concentrations effective in reducing tau protein levels, markedly reduced pre-aggregated Abeta-induced neuronal apoptosis. Our findings raise the possibility that lithium could exert its neuroprotective effect against Abeta toxicity through the downregulation of tau proteins and that, at least, by acting at the level of tau mRNA

    Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A.

    No full text
    ERMAInternational audienceIn tauopathies such as Alzheimer's disease (AD), the molecular mechanisms of tau protein aggregation into neurofibrillary tangles (NFTs) and their contribution to neurodegeneration remain not understood. It was recently demonstrated that tau, regardless of its aggregation, might represent a key mediator of neurodegeneration. Therefore, reduction of tau levels might represent a mechanism of neuroprotection. Glycogen synthase kinase-3beta (GSK3beta) and protein phosphatase-2A (PP2A) are key enzymes involved in the regulation of tau phosphorylation, and have been suggested to be involved in the abnormal tau phosphorylation and aggregation in AD. Connections between PP2A and GSK3beta signaling have been reported. We have previously demonstrated that exposure of cultured cortical neurons to lithium decreased tau protein expression and provided neuroprotection against Abeta. Since lithium is not a specific inhibitor of GSK3beta (ID50=2.0 mM), whether or not the lithium-induced tau decrease involves GSK3beta remained to be determined. For that purpose, cultured cortical neurons were exposed to 6-bromo-indirubin-3'-oxime (6-BIO), a more selective and potent GSK3beta inhibitor (ID50=1.5 microM) or to lithium. Analysis of tau levels and phosphorylation by western-blot assays showed that lithium and 6-BIO dose-dependently decreased both tau protein levels and tau phosphorylation. Conversely, inhibition of cyclin-dependent kinase-5 (CDK5) by roscovitine decreased phosphorylated tau but failed to alter tau protein levels. These data indicate that GSK3beta might be selectively involved in the regulation of tau protein levels. Moreover, inhibition of PP2A by okadaic acid, but not that of PP2B (protein phosphatase-2B)/calcineurin by FK506, dose-dependently reversed lithium-induced tau decrease. These data indicate that GSK3beta regulates both tau phosphorylation and total tau levels through PP2A

    Neuroprotective effects of riluzole in ALS CSF toxicity

    No full text
    International audienc

    Familial 18 centromere variant resulting in difficulties in interpreting prenatal interphase FISH : [Difficultés à l'interprétation d'une FISH interphasique prénatale en rapport avec la présence d'un variant centromérique familial d'un chromosome 18]

    No full text
    ERMAInternational audienceWe report here on a familial case of centromeric heteromorphism of chromosome 18 detected by prenatal interphase fluorescence in situ hybridization (FISH) analysis transmitted by the mother to her fetus, and resulting in complete loss of one 18 signal. The prenatal diagnosis was performed by interphase FISH (AneuVysion probe set, and LSI DiGeorge 22q11.2 kit) because of the presence of an isolated fetal cardiac abnormality, and was first difficult to interpret: only one centromeric 18 signal was detectable on prenatal interphase nuclei, along with one signal for the Y and one for the X chromosome. The LSI DiGeorge 22q11.2 kit also showed the absence of one TUPLE 1 signal on all examined nuclei. In fact, the FISH performed on maternal buccal smear displayed the same absence of one chromosome 18 centromeric signal, combined with the presence of two TUPLE1 signals. All these results led to the diagnosis of an isolated 22q11.2 fetal microdeletion that was confirmed on metaphases spreads. This case illustrates once again that the locus specific (LSI) probes are more effective than the alpha centromeric probes for interphase analysis. The development of high-quality LSI probes for chromosomes 18, X and Y could avoid the misinterpretation of prenatal interphase FISH leading to numerous additional and expensive investigations

    Ex vivo model of congenital cytomegalovirus infection and new combination therapies

    No full text
    International audiencentroduction Congenital human cytomegalovirus (HCMV) infection is a major public health problem due to severe sequelae in the fetus and newborns. Currently, due to their toxicity anti-CMV treatments cannot be administered to pregnant women. We thus developed an ex vivo model of 1st trimester placental CMV infection to observe the route of infection across the placenta and to test the efficacy of various new drugs targeting different stages of viral cycle.Methods After validation of the viability of floating villi explants by ELISA β-HCG, the kinetics of placental infection were determined by immunochemistry and qPCR in this ex vivo model. Antiviral susceptibility was determined in vitro using focus reduction assay and by qPCR in the ex vivo model.Results The ex vivo model showed viral infection in trophoblasts and mesenchymal space of floating villi. In vitro, antiviral combinations of maribavir with baïcalein or artesunate inhibited viral infection by more than 90%. On the other hand, in ex vivo model, infection was reduced by 40% in presence of maribavir and artesunate. The synergistic effect observed in vitro was not observed ex vivo.Discussion This model allowed us to understand the CMV spread in 1st trimester floating villi better and to analyze the anti-CMV efficacy and toxicity of new drugs that could be administered to pregnant women, either alone or in combination.Conclusions Such an ex vivo model could be applied to other viruses such as rubella or parvovirus B19 and in new drug development
    corecore