213 research outputs found

    Improving cognitive control: Is theta neurofeedback training associated with proactive rather than reactive control enhancement?

    Get PDF
    Frontal-midline (FM) theta activity (4–8 Hz) is proposed to reflect a mechanism for cognitive control that is needed for working memory retention, manipulation, and interference resolution. Modulation of FM theta activity via neurofeedback training (NFT) demonstrated transfer to some but not all types of cognitive control. Therefore, the present study investigated whether FM theta NFT enhances performance and modulates underlying EEG characteristics in a delayed match to sample (DMTS) task requiring mainly proactive control and a color Stroop task requiring mainly reactive control. Moreover, temporal characteristics of transfer were explored over two posttests. Across seven 30-min NFT sessions, an FM theta training group exhibited a larger FM theta increase compared to an active control group who upregulated randomly chosen frequency bands. In a posttest performed 13 days after the last training session, the training group showed better retention performance in the DMTS task. Furthermore, manipulation performance was associated with NFT theta increase for the training but not the control group. Contrarily, behavioral group differences and their relation to FM theta change were not significant in the Stroop task, suggesting that NFT is associated with proactive but not reactive control enhancement. Transfer to both tasks at a posttest one day after training was not significant. Behavioral improvements were not accompanied by changes in FM theta activity, indicating no training-induced modulation of EEG characteristics. Together, these findings suggest that NFT supports transfer to cognitive control that manifests late after training but that other training-unspecific factors may also contribute to performance enhancement

    Improving cognitive control: Is theta neurofeedback training associated with proactive rather than reactive control enhancement?

    Get PDF
    Frontal-midline (FM) theta activity (4–8 Hz) is proposed to reflect a mechanism for cognitive control that is needed for working memory retention, manipulation, and interference resolution. Modulation of FM theta activity via neurofeedback training (NFT) demonstrated transfer to some but not all types of cognitive control. Therefore, the present study investigated whether FM theta NFT enhances performance and modulates underlying EEG characteristics in a delayed match to sample (DMTS) task requiring mainly proactive control and a color Stroop task requiring mainly reactive control. Moreover, temporal characteristics of transfer were explored over two posttests. Across seven 30-min NFT sessions, an FM theta training group exhibited a larger FM theta increase compared to an active control group who upregulated randomly chosen frequency bands. In a posttest performed 13 days after the last training session, the training group showed better retention performance in the DMTS task. Furthermore, manipulation performance was associated with NFT theta increase for the training but not the control group. Contrarily, behavioral group differences and their relation to FM theta change were not significant in the Stroop task, suggesting that NFT is associated with proactive but not reactive control enhancement. Transfer to both tasks at a posttest one day after training was not significant. Behavioral improvements were not accompanied by changes in FM theta activity, indicating no training-induced modulation of EEG characteristics. Together, these findings suggest that NFT supports transfer to cognitive control that manifests late after training but that other training-unspecific factors may also contribute to performance enhancement

    Impact of electronic reminders on venous thromboprophylaxis after admissions and transfers

    Get PDF
    Objective Clinical decision support has the potential to improve prevention of venous thromboembolism (VTE). The purpose of this prospective study was to analyze the effect of electronic reminders on thromboprophylaxis rates in wards to which patients were admitted and transferred. The latter was of particular interest since patient handoffs are considered to be critical safety issues. Methods The trial involved two study periods in the six departments of a university hospital, three of which were randomly assigned to the intervention group displaying reminders during the second period. At 6 h after admission or transfer, the algorithm checked for prophylaxis orders within 0-30 h of the patient's arrival, increasing the specificity of the displayed reminders. Results The significant impact of the reminders could be seen by prophylaxis orders placed 6-24 h after admission (increasing from 8.6% (223/2579) to 12% (307/2555); p<0.0001) and transfer (increasing from 2.4% (39/1616) to 3.7% (63/1682); p=0.034). In admission wards, the rate of thromboprophylaxis increased from 62.4% to 67.7% (p<0.0001), and in transfer wards it increased from 80.2% to 84.3% (p=0.0022). Overall, the rate of prophylaxis significantly increased in the intervention group from 69.2% to 74.3% (p<0.0001). No significant changes were observed in the control group. Postponing prophylaxis checks to 6 h after admissions and transfers reduced the number of reminders by 62% and thereby minimized the risk of alert fatigue. Conclusions The reminders improved awareness of VTE prevention in both admission and transfer wards. This approach may contribute to better quality of care and safer patient handoff

    Theta neurofeedback training supports motor performance and flow experience

    Get PDF
    Flow is defined as a cognitive state that is associated with a feeling of automatic and effortless control, enabling peak performance in highly challenging situations. In sports, flow can be enhanced by mindfulness training, which has been associated with frontal theta activity (4-8 Hz). Moreover, frontal-midline theta oscillations were shown to subserve control processes in a large variety of cognitive tasks. Based on previous theta neurofeedback training studies, which revealed that one training session is sufficient to enhance motor performance, the present study investigated whether one 30-minute session of frontal-midline theta neurofeedback training (1) enhances flow experience additionally to motor performance in a finger tapping task, and (2) transfers to cognitive control processes in an n-back task. Participants, who were able to successfully upregulate their theta activity during neurofeedback training (responders), showed better motor performance and flow experience after training than participants, who did not enhance their theta activity (non-responders). Across all participants, increase of theta activity during training was associated with motor performance enhancement from pretest to posttest irrespective of pre-training performance. Interestingly, theta training gains were also linked to the increase of flow experience, even when corresponding increases in motor performance were controlled for. Results for the n-back task were not significant. Even though these findings are mainly correlational in nature and additional flow-promoting influences need to be investigated, the present findings suggest that frontal-midline theta neurofeedback training is a promising tool to support flow experience with additional relevance for performance enhancement

    Design for success: Identifying a process for transitioning to an intensive online course delivery model in health professions education.

    Get PDF
    Intensive courses (ICs), or accelerated courses, are gaining popularity in medical and health professions education, particularly as programs adopt e-learning models to negotiate challenges of flexibility, space, cost, and time. In 2014, the Department of Clinical Research and Leadership (CRL) at the George Washington University School of Medicine and Health Sciences began the process of transitioning two online 15-week graduate programs to an IC model. Within a year, a third program also transitioned to this model. A literature review yielded little guidance on the process of transitioning from 15-week, traditional models of delivery to IC models, particularly in online learning environments. Correspondingly, this paper describes the process by which CRL transitioned three online graduate programs to an IC model and details best practices for course design and facilitation resulting from our iterative redesign process. Finally, we present lessons-learned for the benefit of other medical and health professions\u27 programs contemplating similar transitions. ABBREVIATIONS: CRL: Department of Clinical Research and Leadership; HSCI: Health Sciences; IC: Intensive course; PD: Program director; QM: Quality Matters

    Testing Broken U(1) Symmetry in a Two-Component Atomic Bose-Einstein Condensate

    Full text link
    We present a scheme for determining if the quantum state of a small trapped Bose-Einstein condensate is a state with well defined number of atoms, a Fock state, or a state with a broken U(1) gauge symmetry, a coherent state. The proposal is based on the observation of Ramsey fringes. The population difference observed in a Ramsey fringe experiment will exhibit collapse and revivals due to the mean-field interactions. The collapse and revival times depend on the relative strength of the mean-field interactions for the two components and the initial quantum state of the condensate.Comment: 20 Pages RevTex, 3 Figure

    Curiosity and mesolimbic functional connectivity drive information seeking in real life

    Get PDF
    Curiosity reflects an individual’s intrinsic motivation to seek information in order to close information gaps. In laboratory-based experiments, both curiosity and information seeking have been associated with enhanced neural dynamics in the mesolimbic dopaminergic circuit. However, it is unclear whether curiosity and dopaminergic dynamics drive information seeking in real life. We investigated (i) whether curiosity predicts different characteristics of real-life information seeking and (ii) whether functional connectivity within the mesolimbic dopaminergic circuit is associated with information seeking outside the laboratory. Up to 15 months before the COVID-19 pandemic, curiosity and anxiety questionnaires and a 10-minute resting-state functional magnetic resonance imaging session were conducted. In a follow-up survey early during the COVID-19 pandemic, participants repeated the questionnaires and completed an additional questionnaire about their COVID-19-related information seeking. Individual differences in curiosity but not anxiety were positively associated with the frequency of information-seeking behaviour. Additionally, the frequency of information seeking was predicted by individual differences in resting-state functional connectivity between the ventral tegmental area and the nucleus accumbens. The present translational study paves the way for future studies on the role of curiosity in real-life information seeking by showing that both curiosity and the mesolimbic dopaminergic functional network support real-life information-seeking behaviour

    Fingerprints of Kitaev physics in the magnetic excitations of honeycomb iridates

    Get PDF
    In the quest for realizations of quantum spin liquids, the exploration of Kitaev materials - spin-orbit entangled Mott insulators with strong bond-directional exchanges - has taken center stage. However, in these materials the local spin-orbital j=1/2 moments typically show long-range magnetic order at low temperature, thus defying the formation of a spin-liquid ground state. Using resonant inelastic x-ray scattering (RIXS), we here report on a proximate spin liquid regime with clear fingerprints of Kitaev physics in the magnetic excitations of the honeycomb iridates alpha-Li2IrO3 and Na2IrO3. We observe a broad continuum of magnetic excitations that persists up to at least 300K, more than an order of magnitude larger than the magnetic ordering temperatures. We prove the magnetic character of this continuum by an analysis of the resonance behavior. RIXS measurements of the dynamical structure factor for energies within the continuum show that dynamical spin-spin correlations are restricted to nearest neighbors. Notably, these spectroscopic observations are also present in the magnetically ordered state for excitation energies above the conventional magnon excitations. Phenomenologically, our data agree with inelastic neutron scattering results on the related honeycomb compound RuCl3, establishing a common ground for a proximate Kitaev spin-liquid regime in these materials.Comment: 13 pages, 14 figure
    corecore