101 research outputs found

    Targeted treatment options for paediatric B-cell precursor acute lymphoblastic leukaemia patients with constitutional or somatic chromosome 21 alterations

    Get PDF
    \ua9 2024 The AuthorsBackground: Chromosome 21 is affected in ∼60% of paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients and includes somatic and constitutional gains, intrachromosomal amplification of chromosome 21 (iAMP21), and the translocation t(12;21) resulting in the ETV6::RUNX1 gene fusion. Methods: Since these numeric and structural chromosome 21 alterations are not targetable, we studied the type and frequency of yet-proven targetable events co-occurring with chromosome 21 alterations. Results: Among 307 primary paediatric BCP-ALL cases, JAK/STAT pathway lesions were most frequent in patients with constitutional gain of chromosome 21 (Down syndrome ALL; 35/71, 49%) and iAMP21 (9/22, 41%). RAS pathway lesions were most frequent in high hyperdiploidy (62/108, 57%) and FLT3 lesions were most frequent in iAMP21 (7/22, 32%). Virtually all cases expressed CD19 and CD22 at the cell surface. Positivity for CD20 surface expression ranged from 67% in iAMP21 (8/12) to 20% in ETV6::RUNX1 (26/129). Conclusion: Activated JAK/STAT, RAS or FLT3 signalling, and CD marker surface expression may provide targetable treatment options for the majority of chromosome 21-altered BCP-ALL cases

    Influence of cranial radiotherapy on outcome in children with acute lymphoblastic leukemia treated with contemporary therapy

    Get PDF
    Purpose We sought to determine whether cranial radiotherapy (CRT) is necessary to prevent relapse in any subgroup of children with acute lymphoblastic leukemia (ALL). Patients and Methods We obtained aggregate data on relapse and survival outcomes for 16,623 patients age 1 to 18 years old with newly diagnosed ALL treated between 1996 and 2007 by 10 cooperative study groups from around the world. The proportion of patients eligible for prophylactic CRT varied from 0%to 33% by trial and was not related to the proportion eligible for allogeneic stem-cell transplantation in first complete remission. Using a random effects model, with CRT as a dichotomous covariate, we performed a single-arm metaanalysis to compare event-free survival and cumulative incidence of isolated or any CNS relapse and isolated bone marrow relapse in high-risk subgroups of patients who either did or did not receive CRT. Results Although there was significant heterogeneity in all outcome end points according to trial, CRT was associated with a reduced risk of relapse only in the small subgroup of patients with overt CNS disease at diagnosis, who had a significantly lower risk of isolated CNS relapse (4% with CRT v 17% without CRT; P = .02) and a trend toward lower risk of any CNS relapse (7% with CRT v 17% without CRT; P = .09). However, this group had a relatively high rate of events regardless of whether or not they received CRT (32% [95% CI, 26% to 39%] v 34% [95% CI, 19% to 54%]; P = .8). Conclusion CRT does not have an impact on the risk of relapse in children with ALL treated on contemporary protocols

    Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq: PQ-2017#305529/2017-0Deutsche Forschungsgemeinschaft, DFG: MA 1876/12-1Alexander von Humboldt-Stiftung: 88881.136091/2017-01RVO-VFN64165, 26/203.214/20172018.070.1Associazione Italiana per la Ricerca sul Cancro, AIRC: IG2015, 17593Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPESCancer Australia: PdCCRS1128727CancerfondenBarncancerfondenVetenskapsrÃ¥det, VRCrafoordska StiftelsenKnut och Alice Wallenbergs StiftelseLund University Medical Faculty FoundationXiamen University, XMU2014S0617-74-30019C7838/A15733Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNSF: 31003A_140913CNIBInstitut National Du Cancer, INCaR01 NCI CA167824National Institutes of Health, NIH: S10OD0185222016/2017, 02R/2016AU 525/1-1Deutschen Konsortium für Translationale Krebsforschung, DKTK70112951Smithsonian Institution, SIIsrael Science Foundation, ISFAustrian Science Fund, FWF: W1212SFB-F06107, SFB-F06105Acknowledgements BAL received a fellowship provided by CAPES and the Alexander von Humboldt Foundation (#88881.136091/2017-01). ME is supported by CNPq (PQ-2017#305529/2017-0) and FAPERJ-JCNE (#26/203.214/2017) research scholarships, and ZZ by grant RVO-VFN64165. GC is supported by the AIRC Investigator grant IG2015 grant no. 17593 and RS by Cancer Australia grant PdCCRS1128727. This work was supported by grants to RM from the “Georg und Franziska Speyer’sche Hochsschulstiftung”, the “Wilhelm Sander foundation” (grant 2018.070.1) and DFG grant MA 1876/12-1.Acknowledgements This work was supported by The Swedish Childhood Cancer Foundation, The Swedish Cancer Society, The Swedish Research Council, The Knut and Alice Wallenberg Foundation, BioCARE, The Crafoord Foundation, The Per-Eric and Ulla Schyberg Foundation, The Nilsson-Ehle Donations, The Wiberg Foundation, and Governmental Funding of Clinical Research within the National Health Service. Work performed at the Center for Translational Genomics, Lund University has been funded by Medical Faculty Lund University, Region Skåne and Science for Life Laboratory, Sweden.Acknowledgements This work was supported by the Fujian Provincial Natural Science Foundation 2016S016 China and Putian city Natural Science Foundation 2014S06(2), Fujian Province, China. Alexey Ste-panov and Alexander Gabibov were supported by Russian Scientific Foundation project No. 17-74-30019. Jinqi Huang was supported by a doctoral fellowship from Xiamen University, China.Acknowledgments This work was supported by the Swiss National Science Foundation (grant 31003A_140913; OH) and the Cancer Research UK Experimental Cancer Medicine Centre Network, Cardiff ECMCI, grant C7838/A15733. We thank N. Carpino for the Sts-1/2 double-KO mice.Acknowledgements This work was supported by the French National Cancer Institute (INCA) and the Fondation Française pour la Recherche contre le Myélome et les Gammapathies (FFMRG), the Intergroupe Francophone du Myélome (IFM), NCI R01 NCI CA167824 and a generous donation from Matthew Bell. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the Association des Malades du Myélome Multiple (AF3M) for their continued support and participation. Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization.We are indebted to all members of our groups for useful discussions and for their critical reading of the manuscript. Special thanks go to Silke Furlan, Friederike Opitz and Bianca Killing. F.A. is supported by the Deutsche For-schungsgemeinschaft (DFG, AU 525/1-1). J.H. has been supported by the German Children’s Cancer Foundation (Translational Oncology Program 70112951), the German Carreras Foundation (DJCLS 02R/2016), Kinderkrebsstiftung (2016/2017) and ERA PerMed GEPARD. Support by Israel Science Foundation, ERA-NET and Science Ministry (SI). A. B. is supported by the German Consortium of Translational Cancer Research, DKTK. We are grateful to the Jülich Supercomputing Centre at the Forschungszemtrum Jülich for granting computing time on the supercomputer JURECA (NIC project ID HKF7) and to the “Zentrum für Informations-und Medientechnologie” (ZIM) at the Heinrich Heine University Düsseldorf for providing computational support to H. G. The study was performed in the framework of COST action CA16223 “LEGEND”.Funding The work was supported by the Austrian Science Fund FWF grant SFB-F06105 to RM and SFB-F06107 to VS and FWF grant W1212 to VS

    Quality Control Update of the Cleanroom for Superconducting Multi Cell Cavities at DESY

    No full text
    Abstract The acceleration gradients for superconducting accelerator resonators are improved continuously. The surface electric-and magnetic fields are driven close to the theoretical limits
    corecore