19 research outputs found

    Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella.

    Get PDF
    International audienceTen to fifteen percent of couples are confronted with infertility and a male factor is involved in approximately half the cases. A genetic etiology is likely in most cases yet only few genes have been formally correlated with male infertility. Homozygosity mapping was carried out on a cohort of 20 North African individuals, including 18 index cases, presenting with primary infertility resulting from impaired sperm motility caused by a mosaic of multiple morphological abnormalities of the flagella (MMAF) including absent, short, coiled, bent, and irregular flagella. Five unrelated subjects out of 18 (28%) carried a homozygous variant in DNAH1, which encodes an inner dynein heavy chain and is expressed in testis. RT-PCR, immunostaining, and electronic microscopy were carried out on samples from one of the subjects with a mutation located on a donor splice site. Neither the transcript nor the protein was observed in this individual, confirming the pathogenicity of this variant. A general axonemal disorganization including mislocalization of the microtubule doublets and loss of the inner dynein arms was observed. Although DNAH1 is also expressed in other ciliated cells, infertility was the only symptom of primary ciliary dyskinesia observed in affected subjects, suggesting that DNAH1 function in cilium is not as critical as in sperm flagellum

    Identification and characterization of a novel testis-specific gene CKT2, which encodes a substrate for protein kinase CK2

    Get PDF
    Protein kinase CK2 is a serine/threonine kinase known to phosphorylate numerous substrates. CK2 is implicated in several physiologic and pathologic processes, particularly in cancer biology. CK2 is comprised of several subunits, including CK2α, CK2α′ and CK2β. Inactivation of CK2α′ leads to chromatin degeneration of germ cells, resulting in male sterility. To identify additional targets of CK2α′ in testes and to determine the role of CK2α′ in germ cell nuclear integrity, GST pull-down and protein–protein interaction assays were conducted. A novel testis-specific gene, CKT2 (CK2 Target protein 2), was found whose product interacts with and is phosphorylated by CK2 in vitro and in vivo. CKT2 is a 30.2 kDa protein with one coiled-coil domain and six putative phosphorylation sites. High expression of CKT2 correlated with chromatin condensation of spermatids in murine testes. Findings reported herein demonstrate that CKT2 is a target protein of native CK2α′ in testes and suggest that CKT2 plays a role in chromatin regulation of male germ cells

    Mammalian spermatogenesis investigated by genetic engineering

    Get PDF
    Genes involved in mammal spermatogenesis can now be identified through mutants created by genetic engineering. Information has been obtained on male meiosis, but also on the factors regulating the proliferation, maintenance and differentiation of male germ cells. Its has also increased our knowledge of the germ cell phenotype emerging from an altered germ cell genotype. This review is focused on data from genes expressed in male germ cells and on the question of how germ cells and Sertoli cells cope with the molecular lesions induced. The conservation of a wild-type phenotype of male germ cells in mutant mice is discussed, and how the mouse genetic background can lead to different germ cell phenotypes for a given gene mutation

    Malformations de l’appareil flagellaire du spermatozoïde impliquées dans l’infertilité chez l’homme

    No full text
    La morphogenèse du flagelle du spermatozoïde humain fait intervenir des processus et des composants cellulaires spécifiques. Des malformations des différentes structures internes du flagelle (axonème et structures périaxonémales) sont associées à une infertilité. Ces malformations peuvent être classées en 15 phénotypes principaux dont la majorité sont associées à une consanguinité et/ou une incidence familiale, suggérant une origine génétique, bien qu’à ce jour très peu de gènes aient été formellement impliqués

    The testis anion transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse.

    No full text
    International audienceThe Slc26 family is a conserved family of anion transporters. In the human, their physiological relevance was highlighted with the discovery of pathogenic mutations in several Slc26 transporters that lead to distinctive clinical disorders (Pendred syndrome, deafness, diastrophic dysplasia, congenital chloride diarrhoea) that are related to the specific distribution of these genes. We previously identified TAT1 as a new family member (Slc26A8), very specifically expressed in male germ cells in both the human and the mouse. To investigate Tat1 function in the male germline, we generated mice with a targeted disruption of the Tat1 gene. Heterozygous and homozygous Tat1 mutant mice were indistinguishable from wild-type littermates concerning survival rate, general appearance and gross behaviour; however, Tat1 null males were sterile due to complete lack of sperm motility and reduced sperm fertilization potential. Ultra-structural analysis revealed defects in flagellar differentiation leading to an abnormal annulus, disorganization of the midpiece-principal piece junction, hairpin bending of the sperm tail with disruption of the axial structures, and abnormal mitochondrial sheath assembly. While ATP levels were normal, ATP consumption was strongly reduced in Tat1 null spermatozoa. Interestingly, Tat1 is located at the annulus, a septin-based circular structure connecting the midpiece to the principal piece. Altogether, our results indicate that Tat1 is a critical component of the sperm annulus that is essential for proper sperm tail differentiation and motility
    corecore