16 research outputs found
Epigenetic Small Molecules Rescue Nucleocytoplasmic Transport and DNA Damage Phenotypes in C9ORF72 ALS/FTD
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with available treatments only marginally slowing progression or improving survival. A hexanu-cleotide repeat expansion mutation in the C9ORF72 gene is the most commonly known genetic cause of both sporadic and familial cases of ALS and frontotemporal dementia (FTD). The C9ORF72 expansion mutation produces five dipeptide repeat proteins (DPRs), and while the mechanistic determinants of DPR-mediated neurotoxicity remain incompletely understood, evidence suggests that disruption of nucleocytoplasmic transport and increased DNA damage contributes to pathology. Therefore, characterizing these disturbances and determining the relative contribution of different DPRs is needed to facilitate the development of novel therapeutics for C9ALS/FTD. To this end, we generated a series of nucleocytoplasmic transport “biosensors”, composed of the green fluorescent protein (GFP), fused to different classes of nuclear localization signals (NLSs) and nuclear export signals (NESs). Using these biosensors in conjunction with automated microscopy, we investigated the role of the three most neurotoxic DPRs (PR, GR, and GA) on seven nuclear import and two export pathways. In addition to other DPRs, we found that PR had pronounced inhibitory effects on the classical nuclear export pathway and several nuclear import pathways. To identify compounds capable of counteracting the effects of PR on nucleocytoplasmic transport, we developed a nucleocy-toplasmic transport assay and screened several commercially available compound libraries, totaling 2714 compounds. In addition to restoring nucleocytoplasmic transport efficiencies, hits from the screen also counteract the cytotoxic effects of PR. Selected hits were subsequently tested for their ability to rescue another C9ALS/FTD phenotype—persistent DNA double strand breakage. Overall, we found that DPRs disrupt multiple nucleocytoplasmic transport pathways and we identified small molecules that counteract these effects—resulting in increased viability of PR-expressing cells and decreased DNA damage markers in patient-derived motor neurons. Several HDAC inhibitors were validated as hits, supporting previous studies that show that HDAC inhibitors confer therapeutic effects in neurodegenerative models
The Resource Curse and Rentier States in the Caspian Region : A Need for Context Analysis
Although much attention is paid to the Caspian region with regard to energy issues, the domestic
consequences of the region’s resource production have so far constituted a neglected field of research.
A systematic survey of the latest research trends in the economic and political causalities of
the resource curse and of rentier states reveals that there is a need for context analysis. In reference
to this, the paper traces any shortcomings and promising approaches in the existent body of literature
on the Caspian region. Following on from this, the paper then proposes a new approach; specifically,
one in which any differences and similarities in the context conditions are captured. This
enables a more precise exploration of the exact ways in which they form contemporary post-Soviet
Caspian rentier states.Obwohl der Region am Kaspischen Meer im Zuge von Energiediskursen große Aufmerksamkeit zuteil
wird, stellen die innerstaatlichen Folgen der Ressourcenproduktion in der Region ein bislang
vernachlässigtes Forschungsfeld dar. Ein systematischer Überblick über die jüngsten Forschungstrends
zu wirtschaftlichen und politischen Kausalzusammenhängen des Ressourcenfluchs und zu
Rentierstaaten offenbart die Notwendigkeit von Kontextanalysen. Hierauf Bezug nehmend, analysiert
der Aufsatz sowohl die Mängel als auch viel versprechende Ansätze in der betreffenden Literatur
zur Region am Kaspischen Meer. Der Aufsatz stellt letztendlich einen neuen Ansatz vor, der
Unterschiede und Gemeinsamkeiten in den Kontextbedingungen erfasst, um zu erforschen, wie diese
die gegenwärtigen post-sowjetischen Rentierstaaten in der Region am Kaspischen Meer tatsächlich
prägen
Recommended from our members
DNA Hydroxymethylation in Non-coding Repeat Expansion Disorders
Hexanucleotide repeat expansion in C9ORF72 gene has recently been shown to cause familial amyotrophic lateral sclerosis, a neurodegenerative disease caused by global death of motor neurons. The expansion leads to partial heterochromatinization of the locus, yet mutant RNAs and dipeptide repeat proteins are still produced in sufficient quantities to confer neurotoxicity. So far several research groups have identified DNA hypermethylation at C9ORF72 promoter CpG sites in a fraction of patients, but the developmental timing and the reason of its occurrence only in a subset of individuals remains unknown. In order to model the acquisition of C9ORF72 hypermethylation, we generated induced pluripotent stem cells from an ALS patient with C9ORF72 promoter hypermethylation. Our data show that methylation levels are reduced by reprogramming and then re-acquired upon neuronal specification, while hydroxymethylation levels increase following reprogramming and are highest in iPSCs and motor neurons. We confirmed the presence of hydroxymethylation within the C9ORF72 promoter in post-mortem brain tissues of hypermethylated patients. Using iPSC neurons, we found that preventing R-loop formation did not impede heterochromatinization of the expanded locus. Moreover, we show that in C9-BAC mouse model of ALS, partial heterochromatinization of the C9ORF72 occurs during the first weeks of the lifespan, indicating that epigenetic repression is developmentally regulated. Taken together, these observations provide further insight into mechanism and developmental time-course of epigenetic perturbations conferred by the C9ORF72 repeat expansion. The Fragile X Syndrome (FXS) results from a repeat expansion mutation near the FMR1 gene promoter and is the most common form of heritable intellectual disability and autism. Mutations larger than 200 CGG repeats trigger FMR1 heterochromatinization and loss of gene expression, which is primarily responsible for the pathological features of FXS. While the role of 5-methylcytosine (5mC) in FMR1 gene silencing has been studied extensively, the role of 5-hydroxymethylation (5hmC), a newly discovered epigenetic mark produced through active DNA demethylation, has not been previously investigated in FXS neurons. Here, we used two complementary epigenetic assays, hydroxymethylation sensitive restriction digest and TET-assisted bisulfite pyrosequencing, to quantify FMR1 5mC and 5hmC levels. We observed increased levels of 5hmC at the FMR1 promoter in FXS patient brains with full-mutations relative to pre-mutation carriers and unaffected controls. In addition, we found that 5hmC enrichment at the FMR1 locus in FXS cells is specific to neurons by utilizing a nuclei sorting technique to separate neuronal and glial DNA fractions from post-mortem brain tissues. Future studies could investigate the potential to leverage this epigenetic pathway to restore FMR1 expression and discern whether levels of 5hmC correlate with phenotypic severity
The FMR1 promoter is selectively hydroxymethylated in primary neurons of fragile X syndrome patients
Fragile X syndrome (FXS) results from a repeat expansion mutation near the FMR1 gene promoter and is the most common form of heritable intellectual disability and autism. Full mutations larger than 200 CGG repeats trigger FMR1 heterochromatinization and loss of gene expression, which is primarily responsible for the pathological features of FXS . In contrast, smaller pre-mutations of 55–200 CGG are associated with FMR1 overexpression and Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative condition. While the role of 5-methylcytosine (5mC) in FMR1 gene silencing has been studied extensively, the role of 5-hydroxymethylation (5hmC), a newly discovered epigenetic mark produced through active DNA demethylation, has not been previously investigated in FXS neurons. Here, we used two complementary epigenetic assays, 5hmC sensitive restriction digest and ten-eleven translocation-assisted bisulfite pyrosequencing, to quantify FMR1 5mC and 5hmC levels. We observed increased levels of 5hmC at the FMR1 promoter in FXS patient brains with full-mutations relative to pre-mutation carriers and unaffected controls. In addition, we found that 5hmC enrichment at the FMR1 locus in FXS cells is specific to neurons by utilizing a nuclei sorting technique to separate neuronal and glial DNA fractions from post-mortem brain tissues. This FMR1 5hmC enrichment was not present in cellular models of FXS including fibroblasts, lymphocytes and reprogrammed neurons, indicating they do not fully recapitulate this epigenetic feature of disease. Future studies could investigate the potential to leverage this epigenetic pathway to restore FMR1 expression and discern whether levels of 5hmC correlate with phenotypic severity
A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD
Abstract Background Amyotrophic Lateral Sclerosis (ALS) is a fatal and progressive neurodegenerative disorder with identified genetic causes representing a significant minority of all cases. A GGGGCC hexanucleotide repeat expansion (HRE) mutation within the C9ORF72 gene has recently been identified as the most frequent known cause of ALS. The expansion leads to partial heterochromatinization of the locus, yet mutant RNAs and dipeptide repeat proteins (DPRs) are still produced in sufficient quantities to confer neurotoxicity. The levels of these toxic HRE products positively correlate with cellular toxicity and phenotypic severity across multiple disease models. Moreover, the degree of epigenetic repression inversely correlates with some facets of clinical presentation in C9-ALS patients. Recently, bacterial artificial chromosomes (BAC) have been used to generate transgenic mice that harbor the HRE mutation, complementing other relevant model systems such as patient-derived induced pluripotent stem cells (iPSCs). While epigenetic features of the HRE have been investigated in various model systems and post-mortem tissues, epigenetic dysregulation at the expanded locus in C9-BAC mice remains unexplored. Methods and Results Here, we sought to determine whether clinically relevant epigenetic perturbations caused by the HRE are mirrored in a C9-BAC mouse model. We used complementary DNA methylation assessment and immunoprecipitation methods to demonstrate that epigenetic aberrations caused by the HRE, such as DNA and histone methylation, are recapitulated in the C9-BAC mice. Strikingly, we found that cytosine hypermethylation within the promoter region of the human transgene occurred in a subset of C9-BAC mice similar to what is observed in patient populations. Moreover, we show that partial heterochromatinization of the C9 HRE occurs during the first weeks of the mouse lifespan, indicating age-dependent epigenetic repression. Using iPSC neurons, we found that preventing R-loop formation did not impede heterochromatinization of the HRE. Conclusions Taken together, these observations provide further insight into mechanism and developmental time-course of epigenetic perturbations conferred by the C9ORF72 HRE. Finally, we suggest that epigenetic repression of the C9ORF72 HRE and nearby gene promoter could impede or delay motor neuron degeneration in C9-BAC mouse models of ALS/FTD
Additional file 1: Figure S1. of A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD
Relative quantification (RQ) values of mouse beta-actin, GAPDH and 18S endogenous controls in C9-BAC mouse cortex across different age groups are shown (A). Absolute copy number of human C9ORF72 transcripts per microliter in C9-BAC mice as determined by digital droplet PCR (B), one-way ANOVA (p < 0.001) and Bonferroni’s multiple comparison test was performed between neonatal (0wks) and the remaining age groups, significance is indicated by p < 0.05 * and p < 0.01 **. (JPEG 238 kb
Additional file 2: Figure S2. of A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD
Copy number variation analysis for human C9ORF72 transgene in C9-BAC mouse brain cortex with hypermethylated (me+), unmethylated (me-) promoter and wild-type mouse (WT). (JPEG 142Â kb
Recommended from our members
EZH1 is an antipsychotic-sensitive epigenetic modulator of social and motivational behavior that is dysregulated in schizophrenia
With the capacity to modulate gene networks in an environmentally-sensitive manner, the role of epigenetic systems in mental disorders has come under intense investigation. Dysregulation of epigenetic effectors, including microRNAs and histone-modifying enzymes, may better explain the role of environmental risk factors and the observed heritability rate that cannot be fully attributed to known genetic risk alleles. Here, we aimed to identify novel epigenetic targets of the schizophrenia-associated microRNA 132 (miR-132).
Histone modifications were quantified by immunodetection in response to viral-mediated overexpression of miR-132 while a luminescent reporter system was used to validate targets of miR-132 in vitro. Genome-wide profiling, quantitative PCR and NanoSting were used to quantify gene expression in post-mortem human brains, neuronal cultures and prefrontal cortex (PFC) of mice chronically exposed to antipsychotics. Following viral-mediated depletion of Enhancer of Zeste 1 (EZH1) in the murine PFC, behaviors including sociability and motivation were assessed using a 3-chambered apparatus and forced-swim test, respectively.
Overexpression of miR-132 decreased global histone 3 lysine 27 tri-methylation (H3K27me3), a repressive epigenetic mark. Moreover, the polycomb-associated H3K27 methyltransferase, EZH1, is regulated by miR-132 and upregulated in the PFC of schizophrenics. Unlike its homolog EZH2, expression of EZH1 in the murine PFC decreased following chronic exposure to antipsychotics. Viral-mediated depletion of EZH1 in the mouse PFC attenuated sociability, enhanced motivational behaviors, and affected gene expression pathways related to neurotransmission and behavioral phenotypes.
EZH1 is dysregulated in schizophrenia, sensitive to antipsychotic medications, and a brain-enriched miR-132 target that controls neurobehavioral phenotypes.
•EZH1 is a novel brain-enriched target of miRNA-132.•EZH1 depletion leads to behavioral abnormalities associated with schizophrenia.•EZH1 expression is altered in schizophrenia and is sensitive to antipsychotic medications