5 research outputs found

    BENA435, a new cell-permeant photoactivated green fluorescent DNA probe

    Get PDF
    N′-(2,8-Dimethoxy-12-methyl-dibenzo [c,h] [1,5] naphthyridin-6-yl)-N,N-dimethyl-propane-1,3-diamine (BENA435) is a new cell-membrane permeant DNA dye with absorption/emission maxima in complex with DNA at 435 and 484 nm. This new reagent is unrelated to known DNA dyes, and shows a distinct preference to bind double-stranded DNA over RNA. Hydrodynamic studies suggest that BENA435 intercalates between the opposite DNA strands. BENA435 fluoresces much stronger when bound to dA/dT rather than dG/dC homopolymers. We evaluated 14 related dibenzonaphthyridine derivatives and found BENA435 to be superior in its in vivo DNA-binding properties. Molecular modelling was used to develop a model of BENA435 intercalation between base pairs of a DNA helix. BENA435 fluorescence in the nuclei of cells increases upon illumination, suggesting photoactivation. BENA435 represents thus the first known cell-permeant photoactivated DNA-binding dye

    BENA435 increases the viscosity of DNA solutions and fluoresces preferentially when bound to dA/dT rather than dG/dC DNA tracts

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "BENA435, a new cell-permeant photoactivated green fluorescent DNA probe"</p><p>Nucleic Acids Research 2006;34(5):e43-e43.</p><p>Published online 17 Mar 2006</p><p>PMCID:PMC1409678.</p><p>© The Author 2006. Published by Oxford University Press. All rights reserved</p> () Relative viscosities [(η/η)] of 0.5 mM CT DNA in the absence (Ctrl) or presence of different dyes at 0.1 mM concentration: ethidium bromide (EB), Hoechst 33258 (Ho) and BENA435. () Relative viscosities of CT DNA solutions in the presence of different amounts of BENA435 (red curve; -axis on the right-hand side). Blue curve shows fluorescence intensity of the same DNA/BENA435 solutions used for viscosity measurements (-axis on the left-hand side). () Fluorescence spectra of 1 µM BENA435 and 1 µM BENA435 mixed with plasmid DNA, dA/dT and dG/dC homopolymers taken at 40 µM. Excitation was at 373 nm to show the peak of free BENA435. () Fluorescence emission values of 5 µM BENA435 titrated with dA/dT and dG/dC homopolymers. Graphs show emission values at 484 nm after excitation at 435 nm. Error bars in (A) and (B) show SEM

    Perioperative Systemic Therapy vs Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Alone for Resectable Colorectal Peritoneal Metastases:A Phase 2 Randomized Clinical Trial

    Get PDF
    Importance: To date, no randomized clinical trials have investigated perioperative systemic therapy relative to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) alone for resectable colorectal peritoneal metastases (CPM). Objective: To assess the feasibility and safety of perioperative systemic therapy in patients with resectable CPM and the response of CPM to neoadjuvant treatment. Design, Setting, and Participants: An open-label, parallel-group phase 2 randomized clinical trial in all 9 Dutch tertiary centers for the surgical treatment of CPM enrolled participants between June 15, 2017, and January 9, 2019. Participants were patients with pathologically proven isolated resectable CPM who did not receive systemic therapy within 6 months before enrollment. Interventions: Randomization to perioperative systemic therapy or CRS-HIPEC alone. Perioperative systemic therapy comprised either four 3-week neoadjuvant and adjuvant cycles of CAPOX (capecitabine and oxaliplatin), six 2-week neoadjuvant and adjuvant cycles of FOLFOX (fluorouracil, leucovorin, and oxaliplatin), or six 2-week neoadjuvant cycles of FOLFIRI (fluorouracil, leucovorin, and irinotecan) and either four 3-week adjuvant cycles of capecitabine or six 2-week adjuvant cycles of fluorouracil with leucovorin. Bevacizumab was added to the first 3 (CAPOX) or 4 (FOLFOX/FOLFIRI) neoadjuvant cycles. Main Outcomes and Measures: Proportions of macroscopic complete CRS-HIPEC and Clavien-Dindo grade 3 or higher postoperative morbidity. Key secondary outcomes were centrally assessed rates of objective radiologic and major pathologic response of CPM to neoadjuvant treatment. Analyses were done modified intention-to-treat in patients starting neoadjuvant treatment (experimental arm) or undergoing upfront surgery (control arm). Results: In 79 patients included in the analysis (43 [54%] men; mean [SD] age, 62 [10] years), experimental (n = 37) and control (n = 42) arms did not differ significantly regarding the proportions of macroscopic complete CRS-HIPEC (33 of 37 [89%] vs 36 of 42 [86%] patients; risk ratio, 1.04; 95% CI, 0.88-1.23; P =.74) and Clavien-Dindo grade 3 or higher postoperative morbidity (8 of 37 [22%] vs 14 of 42 [33%] patients; risk ratio, 0.65; 95% CI, 0.31-1.37; P =.25). No treatment-related deaths occurred. Objective radiologic and major pathologic response rates of CPM to neoadjuvant treatment were 28% (9 of 32 evaluable patients) and 38% (13 of 34 evaluable patients), respectively. Conclusions and Relevance: In this randomized phase 2 trial in patients diagnosed with resectable CPM, perioperative systemic therapy seemed feasible, safe, and able to induce response of CPM, justifying a phase 3 trial. Trial Registration: ClinicalTrials.gov Identifier: NCT02758951

    Perioperative Systemic Therapy vs Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Alone for Resectable Colorectal Peritoneal Metastases: A Phase 2 Randomized Clinical Trial

    No full text
    Importance: To date, no randomized clinical trials have investigated perioperative systemic therapy relative to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) alone for resectable colorectal peritoneal metastases (CPM). Objective: To assess the feasibility and safety of perioperative systemic therapy in patients with resectable CPM and the response of CPM to neoadjuvant treatment. Design, Setting, and Participants: An open-label, parallel-group phase 2 randomized clinical trial in all 9 Dutch tertiary centers for the surgical treatment of CPM enrolled participants between June 15, 2017, and January 9, 2019. Participants were patients with pathologically proven isolated resectable CPM who did not receive systemic therapy within 6 months before enrollment. Interventions: Randomization to perioperative systemic therapy or CRS-HIPEC alone. Perioperative systemic therapy comprised either four 3-week neoadjuvant and adjuvant cycles of CAPOX (capecitabine and oxaliplatin), six 2-week neoadjuvant and adjuvant cycles of FOLFOX (fluorouracil, leucovorin, and oxaliplatin), or six 2-week neoadjuvant cycles of FOLFIRI (fluorouracil, leucovorin, and irinotecan) and either four 3-week adjuvant cycles of capecitabine or six 2-week adjuvant cycles of fluorouracil with leucovorin. Bevacizumab was added to the first 3 (CAPOX) or 4 (FOLFOX/FOLFIRI) neoadjuvant cycles. Main Outcomes and Measures: Proportions of macroscopic complete CRS-HIPEC and Clavien-Dindo grade 3 or higher postoperative morbidity. Key secondary outcomes were centrally assessed rates of objective radiologic and major pathologic response of CPM to neoadjuvant treatment. Analyses were done modified intention-to-treat in patients starting neoadjuvant treatment (experimental arm) or undergoing upfront surgery (control arm). Results: In 79 patients included in the analysis (43 [54%] men; mean [SD] age, 62 [10] years), experimental (n = 37) and control (n = 42) arms did not differ significantly regarding the proportions of macroscopic complete CRS-HIPEC (33 of 37 [89%] vs 36 of 42 [86%] patients; risk ratio, 1.04; 95% CI, 0.88-1.23; P = .74) and Clavien-Dindo grade 3 or higher postoperative morbidity (8 of 37 [22%] vs 14 of 42 [33%] patients; risk ratio, 0.65; 95% CI, 0.31-1.37; P = .25). No treatment-related deaths occurred. Objective radiologic and major pathologic response rates of CPM to neoadjuvant treatment were 28% (9 of 32 evaluable patients) and 38% (13 of 34 evaluable patients), respectively. Conclusions and Relevance: In this randomized phase 2 trial in patients diagnosed with resectable CPM, perioperative systemic therapy seemed feasible, safe, and able to induce response of CPM, justifying a phase 3 trial. Trial Registration: ClinicalTrials.gov Identifier: NCT02758951

    Perioperative systemic therapy and cytoreductive surgery with HIPEC versus upfront cytoreductive surgery with HIPEC alone for isolated resectable colorectal peritoneal metastases: Protocol of a multicentre, open-label, parralel-group, phase II-III, randomised, superiority study (CAIRO6)

    No full text
    Background: Upfront cytoreductive surgery with HIPEC (CRS-HIPEC) is the standard treatment for isolated resectable colorectal peritoneal metastases (PM) in the Netherlands. This study investigates whether addition of perioperative systemic therapy to CRS-HIPEC improves oncological outcomes. Methods: This open-label, parallel-group, phase II-III, randomised, superiority study is performed in nine Dutch tertiary referral centres. Eligible patients are adults who have a good performance status, histologically or cytologically proven resectable PM of a colorectal adenocarcinoma, no systemic colorectal metastases, no systemic therapy for colorectal cancer within six months prior to enrolment, and no previous CRS-HIPEC. Eligible patients are randomised (1:1) to perioperative systemic therapy and CRS-HIPEC (experimental arm) or upfront CRS-HIPEC alone (control arm) by using central randomisation software with minimisation stratified by a peritoneal cancer index of 0-10 or 11-20, metachronous or synchronous PM, previous systemic therapy for colorectal cancer, and HIPEC with oxaliplatin or mitomycin C. At the treating physician's discretion, perioperative systemic therapy consists of either four 3-weekly neoadjuvant and adjuvant cycles of capecitabine with oxaliplatin (CAPOX), six 2-weekly neoadjuvant and adjuvant cycles of 5-fluorouracil/leucovorin with oxaliplatin (FOLFOX), or six 2-weekly neoadjuvant cycles of 5-fluorouracil/leucovorin with irinotecan (FOLFIRI) followed by four 3-weekly (capecitabine) or six 2-weekly (5-fluorouracil/leucovorin) adjuvant cycles of fluoropyrimidine monotherapy. Bevacizumab is added to the first three (CAPOX) or four (FOLFOX/FOLFIRI) neoadjuvant cycles. The first 80 patients are enrolled in a phase II study to explore the feasibility of accrual and the feasibility, safety, and tolerance of perioperative systemic therapy. If predefined criteria of feasibility and safety are met, the study continues as a phase III study with 3-year overall survival as primary endpoint. A total of 358 patients is needed to detect the hypothesised 15% increase in 3-year overall survival (control arm 50%; experimental arm 65%). Secondary endpoints are surgical characteristics, major postoperative morbidity, progression-free survival, disease-free survival, health-related quality of life, costs, major systemic therapy related toxicity, and objective radiological and histopathological response rates. Discussion: This is the first randomised study that prospectively compares oncological outcomes of perioperative systemic therapy and CRS-HIPEC with upfront CRS-HIPEC alone for isolated resectable colorectal PM
    corecore