42 research outputs found
FARP1, ARHGEF39, and TIAM2 are essential receptor tyrosine kinase effectors for Rac1-dependent cell motility in human lung adenocarcinoma
Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.Fil: Cooke, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina. University of Pennsylvania; Estados UnidosFil: Kreider Letterman, Gabriel. University Of Toledo (utoledo); Estados UnidosFil: Baker, Martin James. University of Pennsylvania; Estados UnidosFil: Zhang, Suli. University of Pennsylvania; Estados UnidosFil: Sullivan, Neil T.. University of Pennsylvania; Estados UnidosFil: Eruslanov, Evgeniy. University of Pennsylvania; Estados UnidosFil: Abba, Martín Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Goicoechea, Silvia M.. University Of Toledo (utoledo); Estados UnidosFil: Garcia Mata, Rafael. University Of Toledo (utoledo); Estados UnidosFil: Kazanietz, Marcelo Gabriel. University of Pennsylvania; Estados Unido
Folate Receptor Beta Designates Immunosuppressive Tumor-Associated Myeloid Cells That Can Be Reprogrammed with Folate-Targeted Drugs
Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRβ) within the TME and its restriction to the TME. This FRβ+ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8+ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRβ as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors
Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2\u27-deoxycytidine.
Tumor-recruited CD11b myeloid cells, including myeloid-derived suppressor cells, play a significant role in tumor progression, as these cells are involved in tumor-induced immune suppression and tumor neovasculogenesis. On the other hand, the tumor-infiltrated CD11b myeloid cells could potentially be a source of immunostimulatory antigen-presenting cells (APCs), since most of these cells represent common precursors of both dendritic cells and macrophages. Here, we investigated the possibility of generating mature APCs from tumor-infiltrated CD11b myeloid cells. We demonstrate that in vitro exposure of freshly excised mouse tumors to DNA methyltransferase inhibitor 5-aza-2\u27-deoxycytidine (decitabine, AZA) results in selective elimination of tumor cells, but, surprisingly it also enriches CD45(+) tumor-infiltrated cells. The majority of post-AZA surviving CD45(+) tumor-infiltrated cells were represented by CD11b myeloid cells. A culture of isolated tumor-infiltrated CD11b cells in the presence of AZA and GM-CSF promoted their differentiation into mature F4/80/CD11c/MHC class II-positive APCs. These tumor-derived myeloid APCs produced substantially reduced amounts of immunosuppressive (IL-13, IL-10, PGE(2)), pro-angiogenic (VEGF, MMP-9) and pro-inflammatory (IL-1beta, IL-6, MIP-2) mediators than their precursors, freshly isolated tumor-infiltrated CD11b cells. Vaccinating naïve mice with ex vivo generated tumor-derived APCs resulted in the protection of 70% mice from tumor outgrowth. Importantly, no loading of tumor-derived APC with exogenous antigen was needed to stimulate T cell response and induce the anti-tumor effect. Collectively, our results for the first time demonstrate that tumor-infiltrated CD11b myeloid cells can be enriched and differentiated in the presence of DNA demethylating agent 5-aza-2\u27-deoxycytidine into mature tumor-derived APCs, which could be used for cancer immunotherapy
Pivotal Advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE₂ catabolism in myeloid cells.
Recent studies suggest that tumor-infiltrated myeloid cells frequently up-regulate COX-2 expression and have enhanced PGE₂ metabolism. This may affect the maturation and immune function of tumor-infiltrated antigen-presenting cells. In vitro studies demonstrate that tumor-derived factors can skew GM-CSF-driven differentiation of T(h)1-oriented myeloid APCs into M2-oriented Ly6C(+)F4/80(+) MDSCs or Ly6C(-)F4/80(+) arginase-expressing macrophages. These changes enable myeloid cells to produce substantial amounts of IL-10, VEGF, and MIP-2. The tumor-mediated inhibition of APC differentiation was associated with the up-regulated expression of PGE₂-forming enzymes COX-2, mPGES1 in myeloid cells, and the simultaneous repression of PGE(2)-catabolizing enzyme 15-PGDH. The presence of tumor-derived factors also led to a reduced expression of PGT but promoted the up-regulation of MRP4, which works as a PGE₂ efflux receptor. Addition of COX-2 inhibitor to the BM cell cultures could prevent the tumor-induced skewing of myeloid cell differentiation, partially restoring cell phenotype and down-regulating the arginase expression in the myeloid APCs. Our study suggests that tumors impair the intracellular PGE(2) catabolism in myeloid cells through simultaneous stimulation of PGE(2)-forming enzymes and inhibition of PGE₂-degrading systems. This tumor-induced dichotomy drives the development of M2-oriented, arginase-expressing macrophages or the MDSC, which can be seen frequently among tumor-infiltrated myeloid cells
Aberrant PGE₂ metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells.
Bladder cancer is associated with enhanced inflammation and characterized by deregulated prostanoid metabolism. Here we examined prostaglandin E₂ (PGE₂) metabolism and myeloid cell subsets that infiltrate tumor tissue using two xenograft models of human bladder cancer. Human bladder tumor xenografts implanted into athymic nude mice become highly infiltrated with host CD11b myeloid cells of bone marrow origin. Fast growing SW780 bladder tumor xenografts were infiltrated with heterogeneous CD11b myeloid cell subsets including tumor-associated macrophages and myeloid-derived suppressor cells. In contrast, majority of myeloid cells in tumor tissue from slow growing bladder cancer Urothel 11 displayed more immature, homogenous phenotype and comprised mostly MHC II class-negative myeloid-derived suppressor cells. We demonstrate that human bladder tumors secrete substantial amounts of PGE₂. Normal bone marrow myeloid cell progenitors cultured in the presence of a bladder tumor-conditioned medium, which is enriched for PGE₂, failed to differentiate into mature APCs and acquired phenotype of the myeloid-derived suppressor cells or inflammatory macrophages with up-regulated chemokine receptor CXCR4. Collectively our data demonstrate that enhanced cancer-related inflammation and deregulated PGE₂ metabolism in tumor microenvironment promote immunosuppressive pro-tumoral phenotype of myeloid cells in bladder cancer. These data also suggest that not only local tumor microenvironment but other factors such as stage of cancer disease and pace of tumor growth could markedly influence the phenotype, differentiation and immune function of myeloid cells in tumor tissue
Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer.
Many cancers are known to produce high amounts of PGE(2), which is involved in both tumor progression and tumor-induced immune dysfunction. The key enzyme responsible for the biological inactivation of PGE(2) in tissue is NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). It is well established that cancer cells frequently show down-regulated expression of 15-PGDH, which plays a major role in catabolism of the PGE(2). Here we demonstrate that tumor-infiltrated CD11b cells are also deficient for the 15-PGDH gene. Targeted adenovirus-mediated delivery of 15-PGDH gene resulted in substantial inhibition of tumor growth in mice with implanted CT-26 colon carcinomas. PGDH-mediated antitumor effect was associated with attenuated tumor-induced immune suppression and substantially reduced secretion of immunosuppressive mediators and cytokines such as PGE(2), IL-10, IL-13, and IL-6 by intratumoral CD11b cells. We show also that introduction of 15-PGDH gene in tumor tissue is sufficient to redirect the differentiation of intratumoral CD11b cells from immunosuppressive M2-oriented F4/80(+) tumor-associated macrophages (TAM) into M1-oriented CD11c(+) MHC class II-positive myeloid APCs. Notably, the administration of the 15-PGDH gene alone demonstrated a significant therapeutic effect promoting tumor eradication and long-term survival in 70% of mice with preestablished tumors. Surviving mice acquired antitumor T cell-mediated immune response. This study for the first time demonstrates an important role of the 15-PGDH in regulation of local antitumor immune response and highlights the potential to be implemented to enhance the efficacy of cancer therapy and immunotherapy