19 research outputs found

    An expandable approach for design and personalization of digital, just-in-time adaptive interventions

    Get PDF
    Objective: We aim to deliver a framework with 2 main objectives: 1) facilitating the design of theory-driven, adaptive, digital interventions addressing chronic illnesses or health problems and 2) producing personalized intervention delivery strategies to support self-management by optimizing various intervention components tailored to people's individual needs, momentary contexts, and psychosocial variables

    An Interoperability Platform Enabling Reuse of Electronic Health Records for Signal Verification Studies

    Get PDF
    Depending mostly on voluntarily sent spontaneous reports, pharmacovigilance studies are hampered by low quantity and quality of patient data. Our objective is to improve postmarket safety studies by enabling safety analysts to seamlessly access a wide range of EHR sources for collecting deidentified medical data sets of selected patient populations and tracing the reported incidents back to original EHRs. We have developed an ontological framework where EHR sources and target clinical research systems can continue using their own local data models, interfaces, and terminology systems, while structural interoperability and Semantic Interoperability are handled through rule-based reasoning on formal representations of different models and terminology systems maintained in the SALUS Semantic Resource Set. SALUS Common Information Model at the core of this set acts as the common mediator. We demonstrate the capabilities of our framework through one of the SALUS safety analysis tools, namely, the Case Series Characterization Tool, which have been deployed on top of regional EHR Data Warehouse of the Lombardy Region containing about 1 billion records from 16 million patients and validated by several pharmacovigilance researchers with real-life cases. The results confirm significant improvements in signal detection and evaluation compared to traditional methods with the missing background information

    Management of personalised guideline-driven care plans addressing the needs of multi-morbidity via clinical decision support services

    Get PDF
    Introduction: The clinical management of patients suffering from multiple chronic conditions is very complex, disconnected and time-consuming with the traditional care settings. C3-Cloud project aims to build an integrated care platform for addressing the growing demand for improved health outcomes of multimorbid and long-term care patients. Theory/Methods: C3-Cloud has established an ICT infrastructure enabling continuous coordination of patient-centred care activities by a multidisciplinary care team MDT and patients/informal care givers. The Coordinated Care and Cure Delivery Platform C3DP allows, collaborative creation and execution of personalised care plans for multi-morbid patients through systematic and semi-automatic reconciliation of clinical guidelines. Clinical decision support CDS systems implementing flowcharts from evidence based clinical guidelines are integrated to present suggestions for treatment goal and activities e.g. medications, follow-up appointments, diet, exercise, lab tests. Pilot site local care systems are integrated with the C3DP via the technical and semantic interoperability platform to facilitate informed decision making. Active patient involvement is realized through a Patient Empowerment Platform presenting personalized care plan to the patient and establishing a continuous bi-way communication with the patient to collect patient observations, questionnaire responses, symptoms and feedback about care plan goals and activities. Results: The following research results have been achieved to enable guideline enabled personalised care plan management for addressing the needs of multi-morbidity: 43 logical flowcharts were designed out of 4 disease guidelines Type 2 Diabetes, Heart Failure, Renal Failure and Depression. 181 CDS rules assessing 166 patient criteria and recommending 154 goal/activity suggestions were implemented as CDS services in GDL covering T2D and RF. 52 reconciliation rules were designed for eliminating contradicting guideline recommendations due to multi-morbidity. 23 HL7 FHIR profiles were defined for representing care plan and patient data. C3DP has been integrated with these CDS services via CDS-Hooks specification to recommend personalised care plan goals and activities. Discussions: In this research, we have successfully implemented an ICT infrastructure enabling guideline-driven integrated care for multi-morbid patients. Although our ICT solution covers all the technical requirements identified by clinical partners, effective implementation of integrated care in real-life care setting requires major changes in organisational responsibilities and care pathways. Conclusions: User-centred design and usability testing have successfully been completed. C3-Cloud pilot application will now be operated in 3 European pilot sites with the participation of 62 MDT members and 1200 multi-morbid patients for 15 months. Lessons learned: There are two main research lines for reconciliation of contradicting guideline recommendations: 1 fully-automated reconciliation via ontology reasoning, 2 manually-crafted reconciliation rules by clinical expert groups. Although first approach is more dynamic, research results are still for very primitive cases and not clinically validated. As we are targeting an industry-ready solution after piloting in real-life settings, we have opted for the second option. Limitations: When a new chronic disease is to be addressed within our platform, reconciliation rules covering all disease combinations have to be re-assessed by the clinical expert group. Suggestions for future research: Fully-automated reconciliation approaches need to be further studied and validated in real-life settings

    Enabling patient adherence via personalised, just-in time adaptive interventions in ADLIFE architecture

    Get PDF
    Chronic diseases introduce challenges for the patients to continuously be involved in their care activities and manage the changing requirements of their disease. Patient empowerment activities are a critical component to assist patients in their long-term care journey. In the ADLIFE project (H2020, SC1-DTH-11-2019, 875209), an integrated care planning approach is used where patients are assigned various care plan activities by multidisciplinary care teams. To increase patients’ adherence to the care plan, a continuous behavioral monitoring architecture is developed for delivering digital personalised, just-in time adaptive interventions

    Assessment of the effectiveness, socio-economic impact and implementation of a digital solution for patients with advanced chronic diseases : the ADLIFE study protocol

    Get PDF
    Due to population ageing and medical advances, people with advanced chronic diseases (ACD) live longer. Such patients are even more likely to face either temporary or permanent reduced functional reserve, which typically further increases their healthcare resource use and the burden of care on their caregiver(s). Accordingly, these patients and their caregiver(s) may benefit from integrated supportive care provided via digitally supported interventions. This approach may either maintain or improve their quality of life, increase their independence, and optimize the healthcare resource use from early stages. ADLIFE is an EU-funded project, aiming to improve the quality of life of older people with ACD by providing integrated personalized care via a digitally enabled toolbox. Indeed, the ADLIFE toolbox is a digital solution which provides patients, caregivers, and health professionals with digitally enabled, integrated, and personalized care, supporting clinical decisions, and encouraging independence and self-management. Here we present the protocol of the ADLIFE study, which is designed to provide robust scientific evidence on the assessment of the effectiveness, socio-economic, implementation, and technology acceptance aspects of the ADLIFE intervention compared to the current standard of care (SoC) when applied in real-life settings of seven different pilot sites across six countries. A quasi-experimental trial following a multicenter, non-randomized, non-concurrent, unblinded, and controlled design will be implemented. Patients in the intervention group will receive the ADLIFE intervention, while patients in the control group will receive SoC. The assessment of the ADLIFE intervention will be conducted using a mixed-methods approach

    Personalised Care Plan Management Utilizing Guideline-Driven Clinical Decision Support Systems

    No full text
    Older age is associated with an increased accumulation of multiple chronic conditions. The clinical management of patients suffering from multiple chronic conditions is very complex, disconnected and time-consuming with the traditional care settings. Integrated care is a means to address the growing demand for improved patient experience and health outcomes of multimorbid and long-term care patients. Care planning is a prevalent approach of integrated care, where the aim is to deliver more personalized and targeted care creating shared care plans by clearly articulating the role of each provider and patient in the care process. In this paper, we present a method and corresponding implementation of a semi-automatic care plan management tool, integrated with clinical decision support services which can seamlessly access and assess the electronic health records (EHRs) of the patient in comparison with evidence based clinical guidelines to suggest personalized recommendations for goals and interventions to be added to the individualized care plans
    corecore