10 research outputs found

    gamma-ray spectroscopy of Ta-163

    No full text
    Excited states in Ta-163 have been identified for the first time using the Cd-106(Ni-60,3p) fusion evaporation reaction. gamma rays were detected using the JUROGAM gamma-ray spectrometer and recoil discrimination was achieved using the recoil ion transport unit (RITU) gas-filled separator in conjunction with the GREAT spectrometer situated at the focal plane of the RITU. The yrast states are assigned to a strongly coupled rotational band based on a pi h(11/2) configuration. This structure exhibits large signature splitting at low spins that disappears after the paired band crossing because of the alignment of a pair of i(13/2) neutrons. This effect is ascribed to triaxial shape changes induced by the core-polarizing properties of the deformation-aligned h(11/2) proton and the rotation-aligned i(13/2) neutrons. Two additional strongly coupled band structures have been established and are discussed in terms of octupole-vibrational and two-quasiparticle excitations built on the yrast structure. The experimental results are compared with predictions from cranked-shell-model and total-Routhian-surface calculations

    High-spin study of Ta-162

    No full text
    Excited states in the odd-odd neutron deficient nucleus Ta-162 (Z = 73, N = 89) have been studied for the first time. The gamma spectroscopy analysis using gamma - gamma - gamma coincidences revealed a strongly coupled rotational structure that was established up to large angular momentum states. The rotational band was assigned to the configuration pi h(11/2)[514]9/2 circle times nu i(13/2)[660]1/2 based on its rotational and electromagnetic properties. The data are interpreted within the framework of total Routhian surface calculations, which suggests an axially symmetric shape with a gamma-softminimum at beta(2) approximate to 0.16 and gamma approximate to 6 degrees. The crossing of the signature partners observed in heavier (N >= 91) odd-odd nuclides in this mass region is found to be absent at N = 89. This might be correlated with a change in S-band structure above the paired band crossing at these neutron numbers

    THE PARIS PROJECT

    No full text
    The PARIS project is ail initiative to develop and build a high-efficiency gamma-calorimeter principally for Use at SPIRAL2. It is intended to comprise a double shell of scintillators and use the novel scintillator material LaBr3(Ce), which promises a step-change in energy and time resolutions over what is achievable using conventional scintillators. The array could be used in a stand-alone mode, in conjunction with an inner particle detection system, or with high-purity germanium arrays. Its potential physics opportunities as well as initial designs and simulations will be discussed

    Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in Sn-106,Sn-108

    No full text
    The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B(E2;(+)(4) -> 2(1)(+)) values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in Sn-108. (C) 2020 The Authors. Published by Elsevier B.V

    Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in Sn-106,Sn-108

    No full text
    The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B(E2;(+)(4) -> 2(1)(+)) values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in Sn-108. (C) 2020 The Authors. Published by Elsevier B.V
    corecore