30 research outputs found

    The journal I would like

    Get PDF
    Not availabl

    La rivista che vorrei

    Get PDF
    Le riviste scientifiche giocano da sempre un ruolo fondamentale nella diffusione delle conoscenze, in ogni campo disciplinare, e l’identità di una Associazione scientifica è veicolata e rafforzata anche da una propria rivista. Microbiologia Medica (MM), organo ufficiale dell’Associazione Microbiologi Clinici Italiani (AMCLI), per il fatto di essere espressione di una grande associazione professionale, costituisce una realtà particolarmente significativa nel panorama editoriale, molto variegato, della microbiologia italiana.[...

    Essential oils biofilm modulation activity, chemical and machine learning analysis. Application on staphylococcus aureus isolates from cystic fibrosis patients

    Get PDF
    Bacterial biofilm plays a pivotal role in chronic Staphylococcus aureus (S. aureus) infection and its inhibition may represent an important strategy to develop novel therapeutic agents. The scientific community is continuously searching for natural and “green alternatives” to chemotherapeutic drugs, including essential oils (EOs), assuming the latter not able to select resistant strains, likely due to their multicomponent nature and, hence, multitarget action. Here it is reported the biofilm production modulation exerted by 61 EOs, also investigated for their antibacterial activity on S. aureus strains, including reference and cystic fibrosis patients’ isolated strains. The EOs biofilm modulation was assessed by Christensen method on five S. aureus strains. Chemical composition, investigated by GC/MS analysis, of the tested EOs allowed a correlation between biofilm modulation potency and putative active components by means of machine learning algorithms application. Some EOs inhibited biofilm growth at 1.00% concentration, although lower concentrations revealed dierent biological profile. Experimental data led to select antibiofilm EOs based on their ability to inhibit S. aureus biofilm growth, which were characterized for their ability to alter the biofilm organization by means of SEM studies

    Colistin-resistant microorganisms and cystic fibrosis: microbiological surveillance in an Italian Children’s Hospital

    Get PDF
    Several advances in the medical field are often dependent on the ability to fight infections with the use of antibiotics, including joint replacements, organ transplants, and cancer therapy. The capacity of the bacteria to adapt to and escape from the mechanisms of action of antibiotics makes the antimicrobial resistance a serious public health problem worldwide. Polymyxin E colistin has rarely been used because of its nephrotoxicity and neurotoxicity. More recently, the emergence of multi-drug resistant bacteria as carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa and the re-evaluation of its pharmacokinetic properties have led to a resurgence of colistin as a treatment option, contributing to select resistant strains. Investigating the phenomenon of colistin-resistance in gram-negative bacteria, especially P. aeruginosa, is now mandatory, particularly after identification of a plasmid-mediated mechanism for the resistance to colistin (mcr) in Enterobacteriaceae strains, a mechanism transferable to other species. In this study, we investigated colistin-resistance in gram-negative bacteria isolated from respiratory secretions of cystic fibrosis patients in follow-up at Children’s Hospital Bambino Gesù of Rome

    Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline

    Get PDF
    Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF

    Environmental Microbial Contamination during Cystic Fibrosis Group-Based Psychotherapy

    No full text
    Living with cystic fibrosis (CF) exposes patients to the risk of developing anxiety and depression, with therapeutic compliance reduction, hospitalization increase, and quality of life and health outcomes deterioration. As pulmonary infections represent the major cause of morbidity and mortality in patients with CF, environmental contamination due to droplet dispersion and the potential transmission from environment to such patients should be prevented. Therefore, in-person contact, including group-based psychotherapy, are strongly discouraged. Nevertheless, group sharing of disease-related experiences represents a way to recover the inner resources essential for dealing with a chronic pathology. Keeping in mind the guidelines for infection control, the aim of this study is to evaluate the risk of the dissemination of microorganisms in a restricted environment where patients with CF attend group psychotherapy sessions. Five patients, selected according to their microbiological status, attended 32 group-based psychological/psychoanalytic meetings. Before each session, they were asked to observe the infection control recommendations. Microbiological environmental monitoring (MEM) has been performed to evaluate both air and surface contamination. As reported, a strict observation of standard precautions allows one to avoid environmental contamination by pathogens of the CF respiratory tract. Although infection control guidelines discourage group-based psychological/psychoanalytic interventions, our observations report the feasibility and safety of group psychotherapy when strict precautions are taken

    Serratiopeptidase affects the physiology of pseudomonas aeruginosa isolates from cystic fibrosis patients

    No full text
    Pseudomonas aeruginosa is frequently involved in cystic fibrosis (CF) airway infections. Biofilm, motility, production of toxins and the invasion of host cells are different factors that increase P. aeruginosa's virulence. The sessile phenotype offers protection to bacterial cells and resistance to antimicrobials and host immune attacks. Motility also contributes to bacterial colonization of surfaces and, consequently, to biofilm formation. Furthermore, the ability to adhere is the prelude for the internalization into lung cells, a common immune evasion mechanism used by most intracellular bacteria, such as P. aeruginosa. In previous studies we evaluated the activity of metalloprotease serratiopeptidase (SPEP) in impairing virulence-related properties in Gram-positive bacteria. This work aimed to investigate SPEP's effects on different physiological aspects related to the virulence of P. aeruginosa isolated from CF patients, such as biofilm production, pyoverdine and pyocyanin production and invasion in alveolar epithelial cells. Obtained results showed that SPEP was able to impair the attachment to inert surfaces as well as adhesion/invasion of eukaryotic cells. Conversely, SPEP's effect on pyocyanin and pyoverdine production was strongly strain-dependent, with an increase and/or a decrease of their production. Moreover, SPEP seemed to increase swarming motility and staphylolytic protease production. Our results suggest that a large number of clinical strains should be studied in-depth before drawing definitive conclusions. Why different strains sometimes react in opposing ways to a specific treatment is of great interest and will be the object of future studies. Therefore, SPEP affects P. aeruginosa's physiology by differently acting on several bacterial factors related to its virulence

    Anti-Virulence Properties of Coridothymus capitatus Essential Oil against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen responsible for nosocomial infections, and is often involved in airway infections of cystic fibrosis (CF) patients. P. aeruginosa virulence is related to its ability to form biofilm, trigger different types of motilities, and produce toxins (for example, bacterial pigments). In this scenario, essential oils (EOs) have gained notoriety for their role in phenotype modulation, including virulence modulation. Among different EOs previously analyzed, herein we investigated the activity of Coridothymus capitatus EO (CCEO) against specific virulence factors produced by P. aeruginosa isolated from CF patients. CCEO showed inhibition of new biofilm formation and reduction in mature biofilm in about half of the tested strains. On selected strains, SEM analysis provided interesting information regarding CCEO action in a pre-adhesion assay. CCEO treatment showed a dramatic modification of the extracellular matrix (ECM) structure. Our results clearly showed a drastic reduction in pyocyanin production (between 84% and 100%) for all tested strains in the presence of CCEO. Finally, CCEO was also able to strongly affect P. aeruginosa swarming and swimming motility for almost all tested strains. In consideration of the novel results obtained on clinical strains isolated from CF patients, CCEO may be a potential candidate to limit P. aeruginosa virulence

    Anti-virulence potential of a chionodracine-derived peptide against multidrug-resistant pseudomonas aeruginosa clinical isolates from cystic fibrosis patients

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains

    Essential Oils Biofilm Modulation Activity and Machine Learning Analysis on <i>Pseudomonas aeruginosa</i> Isolates from Cystic Fibrosis Patients

    No full text
    The opportunistic pathogen Pseudomonas aeruginosa is often involved in airway infections of cystic fibrosis (CF) patients. It persists in the hostile CF lung environment, inducing chronic infections due to the production of several virulence factors. In this regard, the ability to form a biofilm plays a pivotal role in CF airway colonization by P. aeruginosa. Bacterial virulence mitigation and bacterial cell adhesion hampering and/or biofilm reduced formation could represent a major target for the development of new therapeutic treatments for infection control. Essential oils (EOs) are being considered as a potential alternative in clinical settings for the prevention, treatment, and control of infections sustained by microbial biofilms. EOs are complex mixtures of different classes of organic compounds, usually used for the treatment of upper respiratory tract infections in traditional medicine. Recently, a wide series of EOs were investigated for their ability to modulate biofilm production by different pathogens comprising S. aureus, S. epidermidis, and P. aeruginosa strains. Machine learning (ML) algorithms were applied to develop classification models in order to suggest a possible antibiofilm action for each chemical component of the studied EOs. In the present study, we assessed the biofilm growth modulation exerted by 61 commercial EOs on a selected number of P. aeruginosa strains isolated from CF patients. Furthermore, ML has been used to shed light on the EO chemical components likely responsible for the positive or negative modulation of bacterial biofilm formation
    corecore