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Abstract
Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present

study, sputum samples from CF patients were collected and characterized by 16S rRNA

gene-targeted approach, to assess how lung microbiota composition changes following a

severe decline in lung function. In particular, we compared the airway microbiota of two

groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD)

and patients with a stable lung function (S). The two groups showed a different bacterial

composition, with SD patients reporting a more heterogeneous community than the S ones.

Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococ-
cus and Prevotella. Other than the classical CF pathogens and the most commonly identi-

fied non-classical genera in CF, we found the presence of the unusual anaerobic genus

Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera

described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis

of correlation and anti-correlation networks showed the presence of antagonism and eco-

logical independence between members of Pseudomonas genus and the rest of CF airways

microbiota, with S patients showing a more interconnected community in S patients than in

SD ones. This population structure suggests a higher resilience of S microbiota with respect

to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g.

Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecol-

ogy, improving current knowledge about its composition and polymicrobial interactions in

patients with CF.
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Introduction
Despite recent improvements in cystic fibrosis (CF) treatments, some individuals with CF still
experience a rapid progression of lung disease, which usually leads to irreversible morbidity
and mortality. Bacterial airway infections in CF patients are currently monitored through rou-
tine microbiology procedures and cures are mainly based on culturable microbial pathogens
colonizing CF airways [1]. Unfortunately, the selection and administration of antimicrobial
therapies based on the in vitro susceptibility of classic CF pathogens are not necessarily con-
nected with clinical outcomes [2]. In the last years, there has been an increasing awareness that
airway colonization is not achieved by a single strain or species but from a complex mixture of
microorganisms [3]. Indeed, CF airway microbiota has been shown to be significantly more
complex than initially considered [4–7]. Recent works using culture-independent identification
methods have revealed that CF patients harbor a vast array of bacterial species, not previously
identified and suspected to be involved in CF progression [8–10].

Our understanding of this microbial “black box” has evolved thanks to the development of
next-generation sequencing technologies and bioinformatics tools capable of providing new
insights into airway microbial communities [11]. Recently, it was proposed that microbial lung
community might be considered as a unique, distinct pathogenic entity, whose impact on the
host may be greater than the combined effects of its individual component species alone [12].
Even if these findings have drastically altered our understanding of CF lung disease [13,14],
their translation into clinical improvements remains a substantial obstacle for enhancing the
quality of care [15]. Despite that, a detailed perspective focused on the polymicrobial nature of
CF infections would permit to unravel bacterial dynamics providing biomarkers of disease pro-
gression, as well as novel bacterial targets for antibiotic treatment [16,15].

Until now, many efforts have been made to expand our understanding of the microbial ecol-
ogy of the CF airways and new insight into the impact of antibiotic treatment, patient age
increasing, and periodic pulmonary exacerbation on CF microbiology have been obtained
[8,14,17,18]. Furthermore, a correlation between decreasing diversity of the airways bacterial
community and advancing CF lung disease has been found [8] suggesting that reduced diver-
sity may play a role in CF lung disease progression [19]. However, it is still not well clear how
the airway microbiota composition changes following a severe decline in lung function, as evi-
denced by a clinically important drop in FEV1 (i.e., with a decrease of 5% or more from base-
line values). CF airway infection is viewed as an ecosystem where a climax community
dominates during relatively stable periods [3]. This ecosystem is dominated by stable popula-
tions that are well-adapted to their particular biological niche. A sharp decline in lung function
can alter this stable community, possibly shifting it to an alternative state. Our preliminary
study, performed by culture-based and culture-independent methods, has provided first
insights into relationships between the airway microbiota structure and severe lung function
decline [20]. In particular, we identified significant changes in bacterial community diversity
when stable (S) and substantial decliner (SD) patients were compared and among patients with
different lung disease status (normal/mild, moderate and severe) suggesting that patients with
a moderate lung disease (FEV1 ranging from 40% to 69%) have experienced changes in their
airway bacterial communities [20]. However, the lower discrimination power of molecular
methods previously used did not permit to clearly address the CF airway microbiota associated
with a severe lung function decline. So, in this study, we employed a deep-sequencing approach
based on the 16S rRNA gene-targeted analysis to provide a more-in-depth investigation of the
airway microbiota of CF patients with stable lung function (S) versus that detected in patients
with a sharp decline in lung function (SD). We considered a subset of previously investigated
patients (a total of 52 patients) [20] focusing our attention on S and SD patients only, without
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considering the differences among the different pulmonary physiopathological status (normal/
mild, moderate and severe). New insights into bacterial community features such as biological
diversity, taxa composition and interaction among taxa were given.

Materials and Methods

Ethics Statement
Protocols for the collection and use of sputum samples from cystic fibrosis patients, and for the
procedure of written informed consent were approved by the Ethics Committee of Bambino
Gesù Children's Hospital (Rome, Italy), Cystic Fibrosis Center, Meyer Children's Hospital
(Florence, Italy) and Giannina Gaslini Children's Hospital (Genoa University, Genoa, Italy)
(Prot. N. 681 CM of November 2, 2012; Prot. N. 85 of February 27, 2014; Prot. N. FCC 2012
Partner 4-IGG of September 18, 2012), as previously stated [20]. Informed written consent was
obtained from all subjects aged 18 years and over and from parents of all subjects under 18
years of age before enrollment in the study. All sputum specimens were produced voluntarily.
The study protocol was in agreement with the Guidelines of the European Convention on
Human Rights and Biomedicine for Research in Children and to those of the Ethics Committees
of Bambino Gesù,Meyer and Giannina Gaslini Hospitals. All measures were taken to ensure
patient data protection and confidentiality.

Clinical characteristics of patients
Fifty-two patients with CF (aged 8–59 years) who regularly attended the three Italian CF Cen-
ters were included in this study. Patients were recruited between September 2012 and April
2013 as follows: Bambino Gesù Children's Hospital (Rome, Italy) (n = 29), Giannina Gaslini
Children's Hospital (Genoa, Italy) (n = 14) and Meyer Children's Hospital (Florence, Italy)
(n = 9). Patients older than six years of age, who had been diagnosed with CF according to the
published Guidelines [21], were treated according to current standards of care [22]. Patients
were seen in the CF Centres at least four times per year on a regular basis [1]. At each visit, clin-
ical data collection and microbiological status (colonizing germs) were performed [1]. All
patients were clinically stable, without any pulmonary exacerbation (as defined by a cluster of
symptoms and signs as previously indicated [23,24]) and antibiotic therapy (i.v. or oral) in the
previous four weeks before specimen collection. A subset of a previously reported [20] cohort
of patients was selected. These patients were classified in our previous work [20] into two
groups according to their annual rate of FEV1 decline by measuring the difference between the
best FEV1% registered within the previous year and the best FEV1% registered two-years before
specimen collection. In total, 29 subjects with a rate decline lower than 1.5% were flagged as
“stables” (S), whereas 23 subjects with a rate decline higher than 5%, were flagged as “substan-
tial decliners” (SD). Each FEV1 value was the average of three repeated measurements obtained
2–3 minutes from each other. FEV1 values were measured according to the American Thoracic
Society (ATS) and the European Respiratory Society (ERS) standards [25]. The overall descrip-
tion of the patient dataset is reported in Table 1.

Sample processing and DNA extraction
Spontaneously expectorated sputum (SES) was used in this study, as it represents by far the
most widely used sample in productive patients [26]. Samples processing was performed as
previously described [20]. About 400 μl aliquots of frozen sputum were subjected to genomic
DNA extraction using the commercially available Kit QIAamp DNAMini Kit. Sample aliquots
were spun at 10,000×g to pellet cellular material. After removal of the supernatant, cell pellets
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were resuspended in 180 μl of the appropriate enzyme solution (20 mg/ml lysozyme; 20 mM
Tris�HCl, pH 8.0; 2 mM EDTA; 1.2% Triton), incubated for 30 min at 37°C and then processed
according to the manufacturer’s protocol. Quantity and purity of extracted DNA were checked
by NanoDrop (NanoDrop Technologies, USA), PicoGreen fluorescent assay (Life Technolo-
gies), and gel electrophoresis.

DNA amplification and sequencing
DNA samples were subjected to 16S rRNA gene amplification. Primers and barcodes were
designed according to the Human Microbiome Project Consortium (HMP) (http://www.
hmpdacc.org/tools_protocols/tools_protocols.php). The V3, V4, and V5 hypervariable regions
of the 16S rRNA gene were amplified using primers 357F (50-CCTACGGGAGGCAGCAG-30)
and 926R (50-CCGTCAATTCMTTTRAGT-30) modified with the addition of the 454 FLX-tita-
nium adaptors B and A, respectively. Unique 7-nucleotide barcode sequences (MID 1–18)
were added to the A adaptor as reported in S1 Table. PCR amplification was performed on 2 μl
of DNA template in a total volume of 25 μl containing 1× AccuPrime Buffer II (Life Technolo-
gies), 10 μM of 357F fusion-primer, 10 μM of 926F fusion-primer and 0.03 U/μl AccuPrime
High-Fidelity Taq DNA polymerase (Life Technologies). PCR reactions were heated at 95°C
for 2 min followed by 30 cycles of 95°C for 20 seconds, 55°C for 30 seconds, and 72°C for 5
minutes. All reactions were prepared in a sterile PCR hood. Three independent PCR reactions
were performed for each DNA-template. Negative control reactions were also performed. Each
replicate reaction was examined by electrophoresis on 1.5% agarose gel. PCR amplicons were
cleaned using the Agencourt AMPure XP Beads according to the manufacturer’s specifications
(Beckman Coulter). To ensure removal of primers and any non-specific amplicons, purified
amplicon libraries were analyzed using the Agilent Bioanalyzer 2100 employing the Agilent
DNA 1000 Kit. The Quant-iT PicoGreen dsDNA fluorescent assay Kit (Life Technologies) was
employed to establish the concentration of the purified amplicons. Three independent purified
and quantified PCR reactions were pooled in equimolar proportion foe each sample. Pools
were quantified using KAPA Library Quantification Kits (KAPA Biosystems) to determine the
number of amplifiable molecules in the libraries. Emulsion PCR, emulsion breaking, and
amplicon pyrosequencing were performed applying the 454 GS FLX+ chemistry following sup-
plier protocols (454 Life Sciences Roche Corporation). The GS FLX+ software 2.9 version was

Table 1. Demographic and clinical characteristics of patients enrolled in the study.

Characteristics All Patients Stables (S) Severe-decliners (SD)

Enrolled CF patients (n = 52) (n = 29) (n = 23)

Sex (n) 23 male 16 male 7 male

29 female 13 female 16 female

CFTR genotype, n (%)

F508del/F508del 15 (29%) 8 (28%) 7 (30%)

F508del/other 22 (42%) 12 (41%) 10 (44%)

Other/other 15 (29%) 9 (31%) 6 (26%)

Mean age ±SD 27 ± 12 29 ±12 25 ±11

Mean value of FEV1% ±SD 63 ± 24 66 ± 29 55 ± 19

Disease stage categories, n (%)

Normal/mild (FEV1% > 70) 23 (44%) 13 (45%) 10 (44%)

Moderate (70 � FEV1% � 40) 17 (33%) 10 (34%) 7 (30%)

Severe (FEV1% < 40) 12 (23%) 6 (21%) 6 (26%)

doi:10.1371/journal.pone.0156807.t001
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used for sequencing and the pipeline 3 for long amplicon was used to data processing (454 Life
Sciences Roche Corporation). Sequence files have been uploaded to the NCBI Sequence Read
Archive (SRA) with the accession number: PRJNA290694.

Sequence processing and data generation
Amplicon sequences were demultiplexed using Mothur [27], discarding those with mismatches
in the barcode, primers, linkers or spacers. A first quality check step was performed using
StreamingTrim [28] to remove ambiguous base calls (Phred’s quality score< 25) and convert
sequences into FASTQ format. Filtered sequences were processed following the UPARSE pipe-
line included in the USEARCH package (version 7.0.1090) [29]. In particular, sequences were
trimmed to a fixed length of 250 base-pairs (bp) through the “fastq_trunclen” command. Chi-
meras were removed from pooled sequences with the “uchime_denovo” algorithm, and Opera-
tional Taxonomic Units (OTUs) were generated with an identity cutoff of 97% (which is
approximately close to the taxonomic level of species according to [30]. SINA standalone clas-
sifier was used for taxonomic assignment of representative sequences in combination with the
most recent version of SILVA non-redundant database available (SSU Ref NR 99, release 115).
Genera were categorized as aerobic/anaerobic and pathogenic/non-pathogenic as reported in
[10,31]. OTU oligotyping [32] was performed following the procedures reported in http://
merenlab.org/2013/11/04/oligotyping-best-practices/ with a minimum substantive abundance
criterion (M) of 50. We considered an OTU fully resolved when all its olygotypes had a purity
index of at least 90%. For each oligotype, the first 5 BLAST best hits [33] corresponding to a
defined taxonomy with 100% identity and 100% coverage were reported.

Statistical analyses
To analyze FEV1 decline between patient groups, mixed-effect models with random intercept
and slope were used as data contained repeated measures of the same variable (FEV1 index) for
each unit (patient) in the dataset. Shapiro-Wilk test was used to determine to determine if data
were normally distributed. Thus different linear mixed-effect models were compared through
the likelihood ratio test choosing the one which best fitted our data; for additional information
about fitted models see S1 Appendix and S1 Fig. Mixed-effect models were fitted and compared
in R version 3.2.5 using the lme4 [34] package version 1.1.

Bacterial diversity was inspected through Shannon, Chao 1, Evenness and Richness indices
(the latter expressed as the count of OTUs observed in each sample) on both rarefied and non-
rarefied counts. Since differences between rarefied and non-rarefied values were really low (less
than 0.01%, data not shown), non-rarefied values were reported. All indices were computed
with the R [35] package vegan [36]. The percentage of coverage was calculated by Good's esti-
mator [37] using the formula: [1—(n/N)] × 100, where n is the number of sequences found
once in a sample (singletons), and N is the total number of sequences in that sample. The Even-
ness index was calculated using the formula E = S/log(R), where S is the Shannon diversity
index and R is the number of OTUs in the sample (the Richness). Bacterial communities from
different groups of patients were compared using Multivariate Analysis of Variance (MAN-
OVA) with Pillai-Bartlett statistic. Single OTUs and oligotypes were compared through the
Analysis of Variance (ANOVA) in combination with the Tukey's honest significant difference
(HSD) test. Canonical Correlation Analysis (CCA) was performed using the log transformed
OTUs abundance. All statistical analyses and graphical representations were carried out using
the R software.
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Network construction
Co-occurrence networks were constructed following previously reported methods [38,39]
Undirected graphs reporting the correlation between OTUs were produced. Each node corre-
sponds to a different OTU, whereas each edge represents a significant (p< 0.05) Spearman’s
correlation. The diameter of the nodes was directly proportional to the OTU occurrence in the
dataset whereas the width of the edges was directly proportional to the Spearman’s correlation
index. Produced graphs were arranged using the Fruchterman Reingold algorithm [40]. All sta-
tistical analyses were carried out in the R environment using the igraph package for network
generation [41].

Results

Airways bacterial community structure in S and SD patients
Sputum DNA from 52 specimens, obtained during routine medical care, in accordance with
the ethical Guidelines, was analyzed by pyrosequencing of the V3–V5 hypervariable region of
the 16S rRNA gene. A total of 201903 reads were generated from these samples with an average
length of 541 bp. After demultiplexing, quality control, chimera detection, and length filtering,
158107 high-quality sequences of 250 bp each were collected with an average of 3040 sequences
per sample (ranging from 880 to 6381). The number of sequences and OTUs detected for each
patient has been reported in S2 Table.

To investigate the depth of our 16SrRNA amplicon libraries, rarefaction curves were com-
puted on OTU assignments. Most rarefaction curves approached asymptote (S2 Fig), suggest-
ing that our sampling efforts were able to represent bacterial community assemblages of all
patients. Moreover, Good's estimator reported a satisfactory coverage (higher than 99% for all
52 samples, S2 Table). Forty-four OTUs (based on 97% sequence similarity) were detected
with each sample ranging from 10 to 35 OTUs (S2 Table) (median = 25). Twenty-two genera
were detected with a high intra- and inter- groups variance (Fig 1). All the genera recovered so
far from the respiratory tracts of patients with CF were detected, with the only exception of the
anaerobic genus Sneathia. The analysis of variance of diversity indices (Shannon index, Chao1
and Evenness) based on OTU counts, showed that different conditions did not alter the bacte-
rial diversity of the lung microbiota which remained almost constant in each group (S3 Fig).

OTU 5 was the most abundant (35052 sequences), and it was the only one classified as Pseu-
domonas. Moreover, Pseudomonas was the most abundant genus in 33% of patients, followed
by Staphylococcus (OTU 2, 12990 reads in total and the most abundant genus in 19% of
patients). Ten OTUs were classified as Prevotella, which was found in 96% of the subjects with
a total of 16353 sequences (ranging from 0.02% to 74.49% of the total sequences in each sam-
ple). In one sample, Prevotella was the dominant genus followed by Staphylococcus (8.5% of
sequences). Two OTUs could not be identified at the genus level, and they were reported using
their family attribution with the unclassified flag “un” (Carnobacteriaceae, 5143 sequences in
43 samples and Alcaligenaceae, 741 sequences in 4 samples). Only one OTU was classified as
an “unculturable organism belonging to the Ruminococcaceae family” (18 sequences in 6 sam-
ples). Interestingly, when considering genus abundance, Pseudomonas showed a significant
negative correlation with microbial diversity in both groups of patients (Shannon index: r<
-0.4, p< 0.05; Chao 1 index: r< -0.4, p< 0.05; Richness index: r< -0.5, p< 0.01, Spearman's
rank correlation coefficient for both S and SD group). The abundance of aerobic and anaerobic
genera did not show significant differences between the two groups of patients. Similarly, the
abundance of the most common CF pathogens did not seem to change in S and SD groups
(Wilcoxon signed-rank test: p> 0.05 for all contrasts).
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Fig 1. Relative abundance of sputummicrobiota among patients.Relative OTUs abundance was computed dividing the number of
16S sequences assigned to each OTU by the total number of sequences obtained for each sample. Boxes denote the interquartile range
(IQR) between the 25th and the 75th percentile (first and third quartiles), whereas the inner line represents the median. Whiskers
represent the lowest and highest values within 1.5 times IQR from the first and third quartiles Outliers were reported using white circles.
CP: common CF pathogens; NC: non-classical but commonly identified genera in CF; OG: other genera in CF; NDG: not yet described
genera in CF; S: stable patients; SD: severe decliner patients; [un] unclassified; [unc] uncultured.

doi:10.1371/journal.pone.0156807.g001
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The relationship between global bacterial community composition and patient groups was
then inspected using CCA and two-way MANOVA. The CCA analysis (which explained the
15.7% of the overall inertia, CCA1: 1.6%; CA1: 14.1%), indicated a slight overlap between
patient groups (Fig 2). However, a significant correlation was found between the ordination
analysis and patients’ conditions (Environmental fitting based on 1 000 permutations:
p< 0.01).

The presence of a microbiota signature of patients groups was also supported by two-way
MANOVA (Pillais’ Trace = 0.99, p< 0.05; S3 Table). In particular, two OTUs (OTU 2, classi-
fied as Staphylococcus and OTU 36, classified as Prevotella) showed a different distribution
between groups of patients (ANOVA: p< 0.05; Tukey HSD: p< 0.05; Fig 3a).

OTUs were further characterized by oligotype analysis aiming to detect the presence of dif-
ferent species/strains within the same genus. For OTU 2 (classified as Staphylococcus), by using
five entropy locations (68th, 73th, 80th, 175th and 178th position), we identified three oligotypes:
ACTTC (8 218 reads in 36 subjects), ATTCC (1278 reads in 33 subjects) and ATTCT (104
reads in one subject) (Table 2).

The first oligotype (the most abundant) was the only one to show a different distribution
between S and SD patients (Wilcoxon signed-rank test: p< 0.05), as reported in Fig 3b. BLAST
analysis reported different taxonomic annotations for the three oligotypes, with the ACTTC
oligotype matching Staphylococcus aureus sequences in the first three BLAST best hits
(Table 2). OTU 36 was totally resolved with three entropy locations (12th, 196th and 246th posi-
tions) accounting for a single olygotype. Its taxonomic attribution was confirmed by BLAST
analysis, which reported three different members of Prevotella genus (Table 2). In addition to
OTU 2 and OTU 36, we performed oligotype analysis on the OTU 5. This OTU was the only
one assigned to the Pseudomonas genus, which has been correlated negatively with bacterial
diversity as reported above. Oligotype analysis produced ten different oligotypes most of which
reporting P. aeruginosa as their first BLAST hit (for additional details see S2 Appendix).

Fig 2. Canonical Correlation analysis based on the log-transformed abundance of 44 OTUs. Patient
conditions were used as constraining variable. Two first components (CCA1 and CA1) were plotted
accounting for 15.6% of overall inertia of the data set. Individuals (represented by points) were clustered, and
centroids were computed for each group. Ellipses were drawn using the standard deviation of points
belonging to the same cluster with a confidence limit of 95%.

doi:10.1371/journal.pone.0156807.g002
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Fig 3. Differences in microbial community distribution between stable and severe decliner groups.
Bacterial taxonomic profiling revealed differences between stable and severe decliner communities. a)
Standardized abundances of two OTUs (OTU 2 and 36) showing a different distribution between patient
groups. b) Differences between the two most represented oligotypes identified for OTU 2. Standardize
abundances were calculated as: [x - mean(x)]/sd(x), where "sd" is the standard deviation and “mean” is the
mean value. As a result, all OTUs have equal means and standard deviations (0 and 1, respectively) but
different ranges. Reported p values were obtained with aWilcoxon signed-rank test.

doi:10.1371/journal.pone.0156807.g003

Table 2. BLAST analysis of OTU 2 and OTU 36 oligotypes.

OTU Oligotype (sequences) BLAST hit (16S rRNA gene) Accession

OTU 2 ACTTC (8218) Staphylococcus aureus LN929739

Staphylococcus aureus LN929738

Staphylococcus aureus LN929737

Staphylococcus sp. RB53 KT216039

Staphylococcus sp. RB52 KT216038

ATTCC (1278) Staphylococcus epidermidis KT184898

Staphylococcus hominis KP240988

Staphylococcaceae bacterium JX064866

Bacterium RA7P1 GU366198

Staphylococcus xylosus JQ726638

ATTCT (104) Staphylococcus sp. LW-36 KR258784

Staphylococcus sp. MB30 KJ531648

Staphylococcus epidermidis KT184898

Staphylococcus hominis KP240988

Staphylococcaceae bacterium JX064866

OTU 36 GGT (825) Uncultured Prevotella sp. JF893616

Prevotella pallens NR_113121

Prevotella pallens GU561354

Prevotella sp. oral taxon GQ422737

Prevotella pallens NR_026417

Oligotypes are reported with their name followed by the number of assigned sequences between brackets. Only 16S rRNA genes were reported as valid

BLAST hits.

doi:10.1371/journal.pone.0156807.t002

Cystic Fibrosis Airway Microbiome in Substantial FEV1% Decliners

PLOS ONE | DOI:10.1371/journal.pone.0156807 June 29, 2016 9 / 16



Network analysis
Aiming to investigate if patients’ groups may reflect ecological niche processes at the airway
level that drive coexistence within microbiota, co-occurrence relationships were analyzed. Four
networks were produced reporting positive and negative correlations between OTUs detected
in S and SD patients (Fig 4).

The positive correlation could indicate cooperative interactions or the presence of common
biological functions or ecological niche between taxa. Negative correlations could be indicative
of either competitive interactions or non-overlapping ecological niches or processes between
taxa [42]. Spearman's rank correlation coefficient obtained in our dataset ranged from 0.37 to
0.81 and from -0.42 to -0.70 in positive and negative networks, respectively. Considering global
network properties, positive correlation networks showed a higher number of edges than the
negative ones. Interestingly, the networks of SD patients showed lower average degree values in
both positive and negative correlation on those of S patients. Finally, Pseudomonas showed no
positive correlations with any other member of the microbial community of both S and SD

Fig 4. OTU Networks based on correlation analysis. Networks report positive and negative correlations between OTUs found in the airway microbiota of S
and SD patients. Node color corresponds to taxonomic assignments, whereas node size reflects the log-transformed abundance. Edge thickness is
proportional to the modulus of Spearman's rank correlation coefficient. Average degree values are reported in the upper-right corner of each network.

doi:10.1371/journal.pone.0156807.g004
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patients but represented the node with the highest number of links in the negative correlation
networks (with 18 and 11 edges for S and SD group, respectively).

Discussion
During the last five years, the approach to the study of CF airway infections has changed. The
analysis of single pathogens has been overcome by the analysis of lung bacterial community as
a whole. Indeed, several studies have shown that bacterial community in CF lung is very het-
erogeneous and that its variability may be influenced by multiple factors, such as patient
age, exacerbations status, antibiotic treatment and pulmonary function decline [5,8,18,43].
Given the importance of lung function in CF patients’ health, it is by extension important to
understand the complexity of CF microbiota especially in patients displaying fluctuating levels
of lung function, identifying ecological factors associated with higher/lower pulmonary func-
tion decline. As we continue to enhance our knowledge of the airway microbiota, these factors
and other unanswered questions will guide future research efforts directed towards under-
standing the complex interactions governing the host–microorganism relationship.

In a previous work [20] we provided first insights into the CF airway microbiota of S and
SD patients. By combining culture-based methods and Terminal Restriction Fragment Length
Polymorphism (T-RFLP) analysis of amplified 16S rRNA gene from sputum with clinically rel-
evant information, we found that the bacterial community in SD patients had clear differences
in alpha diversity parameters. However, due to the limitation of T-RFLP in taxa identification,
we did not detail which bacterial taxa mainly contribute to determining such differences
between S and SD patients’ airways bacterial communities, nor we did provide a clearer picture
regarding the dynamic interactions between bacterial communities. The approach used in this
study allowed us to assess exhaustively the bacterial composition in CF samples showing the
presence of 22 distinct bacterial genera, with a massive presence of Pseudomonas and Staphylo-
coccus representatives. In particular, Staphylococcus aureus was more abundant in S patients
than in SD ones. Interestingly, we were able to identify several members of Prevotella genus,
which is considered as an emerging CF pathogens [43,44]. Moreover, thanks to the culture-free
approach here adopted we were able to detect an unclassified member of Alcaligenaceae (a fam-
ily in the order Burkholderiales of the β-Proteobacteria [45]) and Carnobacteriaceae families
along with the unusual anaerobic genus Sneathia. Representatives of the first family have been
isolated from various clinical samples, including respiratory secretions of CF patients [46].
Among them, Achromobacter xylosoxidans represents one of the most important emerging CF
pathogens [47]. The recovery of organisms that are not reported by using the routine clinical
protocols such as members of the Carnobacteriaceae were previously reported by expanded
culture-dependent profiling of CF airway microbiology [48]. Conversely, to the best of our
knowledge, members of Sneathia have never been associated with CF airways microflora. How-
ever, reports of Sneathia occurrence in lung transplant are present [49], suggesting that this
unusual anaerobic genus could indeed colonize lung tissue. It is worth mentioning that, due to
the resolution limit of 16S rRNA based analyses, further taxonomic characterization was not
possible for members of these families within our subjects. In general, results obtained allowed
us to confirm the value of culture-based methods. However, the most commonly identified
non-classical genera in CF, as well as other minor genera described in CF have been detected
by pyrosequencing analysis, highlighting the polymicrobial nature of CF infection [7,50], but
their relation with lung decline deserves further attention and investigation.

The dynamic balance in the airways microbiota ecosystem depends on interactions among
bacterial species as well as between bacteria and the host environment [51]. Until now,
microbe-microbe interactions in CF have been evaluated under in vitro conditions, focused

Cystic Fibrosis Airway Microbiome in Substantial FEV1% Decliners

PLOS ONE | DOI:10.1371/journal.pone.0156807 June 29, 2016 11 / 16



mainly on the traditional pathogen P. aeruginosa, and have revealed the interplay among the
classical CF pathogens [50]. Applying established ecological principles to the study of CF air-
way infection has produced important biological and pathophysiological insights into CF air-
way infection [3]. Network analysis of taxon co-occurrence patterns gives new insight into the
structure of complex microbial communities [39] and offers one of the best apparatus available
today to tackle the tangled human microbiota [51]. Positive correlation networks revealed
widely associated bacterial communities, showing no connections with Pseudomonas. A signifi-
cant negative correlation was found between bacterial diversity and the presence of members
of Pseudomonas genus. Furthermore, negative correlation networks showed a massive number
of negative correlations between Pseudomonas and other members of lung microbiota, suggest-
ing a strong antagonistic potential of Pseudomonas over the airway microbiota and the other
CF pathogens [52]. Interestingly, the network degree values (i.e. the number of interaction
each taxon has with the others) is higher in S than in SD group, suggesting that the S airway
microbiota could be more resilient to environmental changes (as for instance those due to the
spread of a novel opportunistic pathogen, such as Pseudomonas). Indeed, a direct link between
degree of the correlation network and community resilience has been shown in other systems
[53–55]. We can consequently speculate that airway bacterial community, as a whole, can con-
fer a benefit to S patients with respect to the perturbation caused or associated with the spread
of an opportunistic pathogen (e.g. Pseudomonas). The interactions within the microbiota net-
work can influence the healthy or disease status of the human body. The loss of any intercon-
nections between bacteria belonging to Pseudomonas genus and the OTUs co-occurrence
offers a piece of concrete evidence to support the role of this important pathogen in CF disease.
However, diversity measurements are not sufficient to predict patient status in a cross-sectional
study [44]. Indeed, longitudinal studies, following a cohort of patients over time, may help to
elucidate the microbial factors that can contribute to their status changes.

In conclusion, we provided an in-depth description of bacterial community composition
based on the analysis of 16S rRNA gene sequence at different resolution levels from genera to
olygotype characterization. Our findings revealed a different structure and composition of air-
way microbiota in CF airways of S and SD patients. The severe decline in lung function experi-
enced by CF patients was associated with a lower complexity of microbial community, which
in turn could have paved the way for the proliferation of pathogenic bacteria (such as members
of Staphylococcus genus), whereas the stable lung function condition favours a relatively com-
plex bacterial community. The correlation network analysis showed a decreased number of
positive correlations in SD patients microbiota with respect with S ones. In such analysis Pseu-
domonas emerged as the most negatively connected genus, suggesting the presence of a high
number of competitive interactions between Pseudomonas and the other taxa. A high presence
of Pseudomonas would consequently reduce the number of other taxa inhabiting the airways
bacterial community, and then the overall community diversity. Cross-sectional analysis is, of
course, unable to show how community dynamics change, as a result of immune response or
treatment. This is why a metagenomic longitudinal analysis is mandatory as it might lead to
the identification of predictors of clinical change. The possibility to analyze the meta-commu-
nity dynamics and to identify signatures for S and SD patients can give us a set of tools to
unlock the potential of microbiome-based personalized medicine in major disease areas includ-
ing CF.
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