684 research outputs found
Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas
Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG)
plasmas are performed and the nonlinear generated intrinsic flow shows
agreement with the intrinsic flow gradients measured in the core of Ohmic
L-mode plasmas at nominal parameters. Simulations utilising the kinetic
electron model show hollow intrinsic flow profiles as seen in a predominant
number of experiments performed at similar plasma parameters. In addition,
significantly larger flow gradients are seen than in a previous flux-tube
analysis (Hornsby et al {\it Nucl. Fusion} (2017)). Adiabatic electron model
simulations can show a flow profile with opposing sign in the gradient with
respect to a kinetic electron simulation, implying a reversal in the sign of
the residual stress due to kinetic electrons. The shaping of the intrinsic flow
is strongly determined by the density gradient profile. The sensitivity of the
residual stress to variations in density profile curvature is calculated and
seen to be significantly stronger than to neoclassical flows (Hornsby et al
{\it Nucl. Fusion} (2017)). This variation is strong enough on its own to
explain the large variations in the intrinsic flow gradients seen in some AUG
experiments. Analysis of the symmetry breaking properties of the turbulence
shows that profile shearing is the dominant mechanism in producing a finite
parallel wave-number, with turbulence gradient effects contributing a smaller
portion of the parallel wave-vector
Low resistance Cu[3]Ge compounds formation by the lowtemperature treatment of Cu/Ge system in atomic hydrogen
The research deals with the regularities for Cu[3]Ge compound formation under the low temperature treatment of a double-layer Cu/Ge system deposited on i-GaAs substrate in atomic hydrogen flow. The treatment of a Cu/Ge/i-GaAs system with layer thicknesses, respectively, of 122 and 78 nm, in atomic hydrogen with a flow rate of 10{15} at.·сm{-2} s{-1} for a duration of 2.5{-10} min at room temperature, leads to an interdiffusion of Cu and Ge and formation of a polycrystalline film containing stoichiometric phase Cu[3]Ge. The film consists of vertically oriented grains of dimensions 100-150 nm and has a minimum specific resistance of 4.5 [mu omega] сm. Variation in the treatment duration of Cu/Ge/i-GaAs samples in atomic hydrogen affects Cu and Ge distribution profiles, the phase composition of films formed, and the specific resistance of the latter. As observed, Cu3Ge compound synthesis at room temperature demonstrates the stimulative effects characteristic of atomic hydrogen treatment for both Cu and Ge diffusion and for the chemical reaction of Cu[3]Ge compound generation. Activation of these processes can be conditioned by the energy released during recombination of hydrogen atoms adsorbed on the surface of a Cu/Ge/i-GaAs sample
Surface hardening of stainless steel by runaway electronspreionized diffuse discharge in air atmosphere
In this paper we present microhardness measurements of stainless steel surface treated by diffuse discharge in air atmosphere. The cleaning from carbon in comparison to the initial sample was observed at a depth exceeding 20 nm. The oxygen concentration was also increased in comparison to that in the initial sample at a depth of up to about 50 nm. Comparative analysis shows that after treatment the microhardness of stainless steel surface increased in 2 times due to interaction of near-surface layers with product of plasma chemical reactions produced in diffuse discharge
Propagation of rotational waves in a block geomedium
On the base of assumption that the rotational movements of the chain of the crust blocks and the corresponding rotational waves characterizing the redistribution of tectonic stresses are described by the sine-Gordon equation with dissipation, the dispersion properties of this equation are analyzed. It is shown that the dispersion is manifested in the low-frequency range at high values of the dissipation factor. The presence of anomalous dispersion has been revealed for all values of the dissipation factor. Influence of this factor on dispersion is investigated. Some features of propagation of a stationary shock wave in a geomedium are studied. It has been found that the shock wave front width is directly proportional to the nonlinear wave velocity and to the dissipation factor of the medium, but it is inversely proportional to the nonlinearity coefficient
Validation of the TGLF model against Ohmic confinement transition and impurity transport experiment in ASDEX Upgrade
Non-Newtonian Couette-Poiseuille flow of a dilute gas
The steady state of a dilute gas enclosed between two infinite parallel
plates in relative motion and under the action of a uniform body force parallel
to the plates is considered. The Bhatnagar-Gross-Krook model kinetic equation
is analytically solved for this Couette-Poiseuille flow to first order in the
force and for arbitrary values of the Knudsen number associated with the shear
rate. This allows us to investigate the influence of the external force on the
non-Newtonian properties of the Couette flow. Moreover, the Couette-Poiseuille
flow is analyzed when the shear-rate Knudsen number and the scaled force are of
the same order and terms up to second order are retained. In this way, the
transition from the bimodal temperature profile characteristic of the pure
force-driven Poiseuille flow to the parabolic profile characteristic of the
pure Couette flow through several intermediate stages in the Couette-Poiseuille
flow are described. A critical comparison with the Navier-Stokes solution of
the problem is carried out.Comment: 24 pages, 5 figures; v2: discussion on boundary conditions added; 10
additional references. Published in a special issue of the journal "Kinetic
and Related Models" dedicated to the memory of Carlo Cercignan
Electrochemical Nanoprobes for Single-Cell Analysis
The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5–200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells
Non-sinusoidal magnetoelastic waves in structural members
The paper discuses propagation of longitudinal waves in a homogeneous nonlinear superconducting rod placed in strong magnetic field. By using the nonlinear Bishop model the equations of magnetoelasticity for the rod performing longitudinal oscillations has been derived. The evolution of nonlinear magnetoelastic waves is studied. As a result the conditions of formation of intense periodic magnetoelastic waves and magnetoelastic solitons are established
- …
