23 research outputs found

    Anti-Lambda polarization in high energy pp collisions with polarized beam

    Full text link
    We study the polarization of the anti-Lambda particle in polarized high energy pp collisions at large transverse momenta. The anti-Lambda polarization is found to be sensitive to the polarization of the anti-strange sea of the nucleon. We make predictions using different parameterizations of the polarized quark distribution functions. The results show that the measurement of longitudinal anti-Lambda polarization can distinguish different parameterizations, and that similar measurements in the transversely polarized case can give some insights into the transversity distribution of the anti-strange sea of nucleon.Comment: 11 pages, 4 figure

    Anti-Hyperon polarization in high energy pp collisions with polarized beams

    Get PDF
    We study the longitudinal polarization of the Sigma_bar and Xi_bar anti-hyperons in polarized high energy pp collisions at large transverse momenta, extending a recent study for the Lambda_bar anti-hyperon. We make predictions by using different parametrizations of the polarized parton densities and models for the polarized fragmentation functions. Similar to the Lambda_bar polarization, the Xi_bar0 and Xi_bar+ polarizations are found to be sensitive to the polarized anti-strange sea in the nucleon. The Sigma_bar- and Sigma_bar+ polarizations show sensitivity to the light sea quark polarizations, \Delta \bar u(x) and \Delta \bar d(x), and their asymmetry.Comment: 17 pages, 9 figures,version to appear in PR

    The RHIC Spin Program: Achievements and Future Opportunities

    Get PDF
    This document summarizes recent achievements of the RHIC spin program and their impact on our understanding of the nucleon's spin structure, i.e. the individual parton (quark and gluon) contributions to the helicity structure of the nucleon and to understand the origin of the transverse spin phenomena. Open questions are identified and a suite of future measurements with polarized beams at RHIC to address them is laid out. Machine and detector requirements and upgrades are briefly discussed

    The RHIC SPIN Program: Achievements and Future Opportunities

    Get PDF
    Time and again, spin has been a key element in the exploration of fundamental physics. Spin-dependent observables have often revealed deficits in the assumed theoretical framework and have led to novel developments and concepts. Spin is exploited in many parity-violating experiments searching for physics beyond the Standard Model or studying the nature of nucleon-nucleon forces. The RHIC spin program plays a special role in this grand scheme: it uses spin to study how a complex many-body system such as the proton arises from the dynamics of QCD. Many exciting results from RHIC spin have emerged to date, most of them from RHIC running after the 2007 Long Range Plan. In this document we present highlights from the RHIC program to date and lay out the roadmap for the significant advances that are possible with future RHIC running

    Muon g-2

    No full text
    The muon g-2 collaboration has measured the anomalous magnetic g value of the positive muon to within a relative uncertainty of 0.7 parts per million. The result, a_{\mu^+} = 11 659 204(7)(5) x 10^{-10} is in good agreement with the preceding data on a_{\mu^+} and a_{\mu^-} and has about twice smaller uncertainty. The measurement tests standard model theory, which at the level of the experimental uncertainty involves quantum electrodynamics, quantum chromodynamics, and electroweak interaction in significant ways. The analysis of the anomalous magnetic g value of the negative muon is well underway
    corecore