13,507 research outputs found
Unethical aspects of homeopathic dentistry
In the last year there has been a great deal of public debate about homeopathy, the system of alternative medicine whose main principles are that like cures like and that potency increases relative to dilution. The House of Commons Select Committee on Science and Technology concluded in November 2009 that there is no evidence base for homeopathy, and agreed with some academic commentators that homeopathy should not be funded by the NHS. While homeopathic doctors and hospitals are quite commonplace, some might be surprised to learn that there are also many homeopathic dentists practising in the UK. This paper examines the statements made by several organisations on behalf of homeopathic dentistry and suggests that they are not entirely ethical and may be in breach of various professional guidelines
Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests
A set of key properties for an ideal dissipation scheme in gyrokinetic
simulations is proposed, and implementation of a model collision operator
satisfying these properties is described. This operator is based on the exact
linearized test-particle collision operator, with approximations to the
field-particle terms that preserve conservation laws and an H-Theorem. It
includes energy diffusion, pitch-angle scattering, and finite Larmor radius
effects corresponding to classical (real-space) diffusion. The numerical
implementation in the continuum gyrokinetic code GS2 is fully implicit and
guarantees exact satisfaction of conservation properties. Numerical results are
presented showing that the correct physics is captured over the entire range of
collisionalities, from the collisionless to the strongly collisional regimes,
without recourse to artificial dissipation.Comment: 13 pages, 8 figures, submitted to Physics of Plasmas; typos fixe
Evidence of secondary relaxations in the dielectric spectra of ionic liquids
We investigated the dynamics of a series of room temperature ionic liquids
based on the same 1-butyl-3-methyl imidazolium cation and different anions by
means of broadband dielectric spectroscopy covering 15 decades in frequency
(10^(-6)-10^9 Hz), and in the temperature range from 400 K down to 35 K. An
ionic conductivity is observed above the glass transition temperature T_{g}
with a relaxation in the electric modulus representation. Below T_{g}, two
relaxation processes appear, with the same features as the secondary
relaxations typically observed in molecular glasses. The activation energy of
the secondary processes and their dependence on the anion are different. The
slower process shows the characteristics of an intrinsic Johari-Goldstein
relaxation, in particular an activation energy E_{beta}=24k_{B}T_{g} is found,
as observed in molecular glasses.Comment: Major revision, submitted to Phys. Rev. Let
Nontrivial Velocity Distributions in Inelastic Gases
We study freely evolving and forced inelastic gases using the Boltzmann
equation. We consider uniform collision rates and obtain analytical results
valid for arbitrary spatial dimension d and arbitrary dissipation coefficient
epsilon. In the freely evolving case, we find that the velocity distribution
decays algebraically, P(v,t) ~ v^{-sigma} for sufficiently large velocities. We
derive the exponent sigma(d,epsilon), which exhibits nontrivial dependence on
both d and epsilon, exactly. In the forced case, the velocity distribution
approaches a steady-state with a Gaussian large velocity tail.Comment: 4 pages, 1 figur
Re-entrant Layer-by-Layer Etching of GaAs(001)
We report the first observation of re-entrant layer-by-layer etching based on
{\it in situ\/} reflection high-energy electron-diffraction measurements. With
AsBr used to etch GaAs(001), sustained specular-beam intensity oscillations
are seen at high substrate temperatures, a decaying intensity with no
oscillations at intermediate temperatures, but oscillations reappearing at
still lower temperatures. Simulations of an atomistic model for the etching
kinetics reproduce the temperature ranges of these three regimes and support an
interpretation of the origin of this phenomenon as the site-selectivity of the
etching process combined with activation barriers to interlayer adatom
migration.Comment: 11 pages, REVTeX 3.0. Physical Review Letters, in press
Johrei Family Healing: A Pilot Study
Johrei is a form of spiritual healing comprising “energy channelling” and light massage given either by a trained healer or, after some basic training, by anyone. This pilot trial aimed to identify any potential benefits of family-based Johrei practice in childhood eczema and for general health and to establish the feasibility of a subsequent randomised controlled trial. Volunteer families of 3-5 individuals, including at least one child with eczema were recruited to an uncontrolled pilot trial lasting 12 months. Parents were trained in Johrei healing and then practised at home with their family. Participants kept diaries and provided questionnaire data at baseline, 3,6 and 12 months. Eczema symptoms were scored at the same intervals. Scepticism about Johrei is presently an obstacle to recruitment and retention of a representative sample in a clinical trial, and to its potential use in general practice. The frequency and quality of practise at home by families may be insufficient to bring about the putative health benefits. Initial improvements in eczema symptoms and diary recorded illness, could not be separated from seasonal factors and other potential confounders. There were no improvements on other outcomes measuring general health and psychological wellbeing of family members
A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles
We present a Lattice-Boltzmann method for simulating self-propelling (active)
colloidal particles in two-dimensions. Active particles with symmetric and
asymmetric force distribution on its surface are considered. The velocity field
generated by a single active particle, changing its orientation randomly, and
the different time scales involved are characterized in detail. The steady
state speed distribution in the fluid, resulting from the activity, is shown to
deviate considerably from the equilibrium distribution.Comment: 8 pages, 13 figure
Numerical Evidence for Divergent Burnett Coefficients
In previous papers [Phys. Rev. A {\bf 41}, 4501 (1990), Phys. Rev. E {\bf
18}, 3178 (1993)], simple equilibrium expressions were obtained for nonlinear
Burnett coefficients. A preliminary calculation of a 32 particle Lennard-Jones
fluid was presented in the previous paper. Now, sufficient resources have
become available to address the question of whether nonlinear Burnett
coefficients are finite for soft spheres. The hard sphere case is known to have
infinite nonlinear Burnett coefficients (ie a nonanalytic constitutive
relation) from mode coupling theory. This paper reports a molecular dynamics
caclulation of the third order nonlinear Burnett coefficient of a Lennard-Jones
fluid undergoing colour flow, which indicates that this term is diverges in the
thermodynamic limit.Comment: 12 pages, 9 figure
- …