313 research outputs found

    Prevalence of findings compatible with carotid artery calcifications on dental panoramic radiographs

    Get PDF
    Cerebrovascular accidents are responsible for killing or disabling more than half a million Americans every year. They are the third leading cause of death in this country. In Germany, the annual stroke incidence reaches 182 cases per 100,000 inhabitants. Stroke there is the fourth leading cause of death. There is a need of finding cost-effective means of decreasing stroke mortality and morbidity. Instruments for early diagnosis are of great humanitarian and economic importance. All possible clinical findings should be taken into account. It is not the demand of this study to present the panoramic radiograph as a screening test method for early diagnosis of atherosclerosis. The aim is to show the potential of this radiograph used in everyday clinical dental practice by the prevalence of radiopaque findings in the carotid region. This study included panoramic dental radiographs of 2,557 patients older than 30years of age. Fifty-nine percent of the patients were women and 41% were men. The radiographs were adjudged for signs compatible with carotid arterial calcifications appearing as a radiopaque nodular mass adjacent to the cervical vertebrae at or below the intervertebral space C3-4. Of all these radiographs, 4.8% showed radiopaque findings compatible with atherosclerotic lesions. The proportion of women reached 64.8% and that of men reached 35.2%. In accordance to recent literature, the results of this study show that about 5% of the patients show radiological findings compatible with carotid arterial calcifications. Some of these patients at risk for a cerebrovascular accident may be identified in the dentist's office by appropriate review of the panoramic dental radiograph. The suspicion of carotid artery calcifications demands an impetuous referral to an appropriate practitioner who can assist in the control of risk factors and if necessary arrange surgical removal of the carotid arterial plaque. So, the dentist should be aware of this problem and able to make a contribution to stroke preventio

    DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs

    Get PDF
    Biomechanical changes in the tumor microenvironment influence tumor progression and metastases. Collagen content and fiber organization within the tumor stroma are major contributors to biomechanical changes (e., tumor stiffness) and correlated with tumor aggressiveness and outcome. What signals and in what cells control collagen organization within the tumors, and how, is not fully understood. We show in mouse breast tumors that the action of the collagen receptor DDR2 in CAFs controls tumor stiffness by reorganizing collagen fibers specifically at the tumor-stromal boundary. These changes were associated with lung metastases. The action of DDR2 in mouse and human CAFs, and tumors in vivo, was found to influence mechanotransduction by controlling full collagen-binding integrin activation via Rap1-mediated Talin1 and Kindlin2 recruitment. The action of DDR2 in tumor CAFs is thus critical for remodeling collagen fibers at the tumor-stromal boundary to generate a physically permissive tumor microenvironment for tumor cell invasion and metastases

    Prevalence of findings compatible with carotid artery calcifications on dental panoramic radiographs

    Get PDF
    Cerebrovascular accidents are responsible for killing or disabling more than half a million Americans every year. They are the third leading cause of death in this country. In Germany, the annual stroke incidence reaches 182 cases per 100,000 inhabitants. Stroke there is the fourth leading cause of death. There is a need of finding cost-effective means of decreasing stroke mortality and morbidity. Instruments for early diagnosis are of great humanitarian and economic importance. All possible clinical findings should be taken into account. It is not the demand of this study to present the panoramic radiograph as a screening test method for early diagnosis of atherosclerosis. The aim is to show the potential of this radiograph used in everyday clinical dental practice by the prevalence of radiopaque findings in the carotid region. This study included panoramic dental radiographs of 2,557 patients older than 30 years of age. Fifty-nine percent of the patients were women and 41% were men. The radiographs were adjudged for signs compatible with carotid arterial calcifications appearing as a radiopaque nodular mass adjacent to the cervical vertebrae at or below the intervertebral space C3-4. Of all these radiographs, 4.8% showed radiopaque findings compatible with atherosclerotic lesions. The proportion of women reached 64.8% and that of men reached 35.2%. In accordance to recent literature, the results of this study show that about 5% of the patients show radiological findings compatible with carotid arterial calcifications. Some of these patients at risk for a cerebrovascular accident may be identified in the dentist's office by appropriate review of the panoramic dental radiograph. The suspicion of carotid artery calcifications demands an impetuous referral to an appropriate practitioner who can assist in the control of risk factors and if necessary arrange surgical removal of the carotid arterial plaque. So, the dentist should be aware of this problem and able to make a contribution to stroke prevention

    On Correctness of Data Structures under Reads-Write Concurrency

    Get PDF
    Abstract. We study the correctness of shared data structures under reads-write concurrency. A popular approach to ensuring correctness of read-only operations in the presence of concurrent update, is read-set validation, which checks that all read variables have not changed since they were first read. In practice, this approach is often too conserva-tive, which adversely affects performance. In this paper, we introduce a new framework for reasoning about correctness of data structures under reads-write concurrency, which replaces validation of the entire read-set with more general criteria. Namely, instead of verifying that all read conditions over the shared variables, which we call base conditions. We show that reading values that satisfy some base condition at every point in time implies correctness of read-only operations executing in parallel with updates. Somewhat surprisingly, the resulting correctness guarantee is not equivalent to linearizability, and is instead captured through two new conditions: validity and regularity. Roughly speaking, the former re-quires that a read-only operation never reaches a state unreachable in a sequential execution; the latter generalizes Lamport’s notion of regular-ity for arbitrary data structures, and is weaker than linearizability. We further extend our framework to capture also linearizability. We illus-trate how our framework can be applied for reasoning about correctness of a variety of implementations of data structures such as linked lists.

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures

    Physical properties of the NEGIS ice core - The upper 1700m in EGRIP

    Get PDF
    We will present the EGRIP CPO (c-axes fabric) dataset and give preliminary interpretations concerning the processes leading to its evolution. 120 bags were selected, with a minimum depth resolution of 15m. Bags were mostly measured continuously, and in total 778 thin sections were prepared, measured and pre-processed on site. Thus, c-axes distribution CPO data are already available, while other parameters on grain stereology are still to be processed at this stage. The CPO patterns found in the upper 1650m at EGRIP show (1) a rapid evolution of c-axes anisotropy compared to lower dynamics sites and (2) partly novel characteristics in the CPO patterns. (1) Starting the measurements at 118m of depth we find a very broad single maximum distribution. The c-axes align with depth in the upper 400m much more rapidly than seen in ice cores from divides or domes. Down to only 140m depth the almost random CPO develops into a very broad single maximum which is similar to those CPOs found in the shallowest samples of other ice cores. Possible interpretations of these distributions are deformation by vertical compression from overlying layers, or alternatively a temperature-gradient snow metamorphosis. This weak CPO pattern is, however, quickly overprinted in the depth zone below 140m where a progressive evolution towards a vertical girdle distribution is observed. As vertical girdles are produced by extension along flow, the observed distribution indicates that the ice at this depth is deforming rather than just being translated by rigid block movement. From approximately 600m of depth downward we observe crystal orientation anisotropy of a strength comparable to samples from ~1400m of depth at divides (NEEM and EDML). This strong girdle CPO remains rather stable down to approximately 1300m depth, where we reach the ice deposited during the last glacial period. A novel pattern, not observed before in natural ice, is a higher densities of c-axes horizontally oriented within the vertical girdle. (2) The early onset of deformation seems further supported by the observation of a broad “hourglass shaped” girdle, which seems to develop in some depths into a “butterfly shaped” cross girdle. Another characteristic deserves attention: the distribution density within the girdle. In contrast to observations in deep ice cores so far, the highest density seems to deviate from the vertical direction being (sub-)parallel to the horizontal. The origin of this may lay in the main deformation modes, e.g. a combination of along flow extension with additional deformation modes. Especially interesting is the cross girdle, which has not yet been observed in polar ice cores so far. We suggest three possible interpretations for its origin: a) In other materials, such as quartz, cross girdles can be interpreted as activation of multiple dislocation slip systems. b) Alternatively, the CPO pattern may reflect reminiscent features from previous deformation modes, which the ice experienced upstream or possibly even outside of the ice stream. This memory effect would point to a relevance of strain dependence of the CPO. c) The cross- /double-girdle might be caused by the early onset of dynamic migration recrystallization under horizontal uniaxial extension

    An analysis of the influence of deformation and recrystallisation on microstructures of the EastGRIP ice core

    Get PDF
    New and more detailed investigations from the EGRIP physical properties dataset down to 1650m of the ice core will be presented. EGRIP is the first deep ice core through one of our Earth’s ice sheets partly motivated by ice dynamics’ research. It is drilled just downstream of the onset of the largest ice stream in Greenland (North East Greenland Ice Stream). Data processing of the collected ice core physical properties data was done at the Alfred Wegener Institute Helmholtz Centre for Marine and Polar Research. The two main findings regarding CPO (c-axes fabric) pattern, 1) a rapid evolution of c-axes anisotropy and 2) partly novel characteristics, were further, and in more detail, investigated. To gain a better understanding of the dominating deformation mechanisms of NEGIS, different approaches considering different length scales were chosen (1650m versus 0.55m and 0.09m scale), including several case studies. A large-scale statistical analysis of the entire dataset results in new information about the depth-dependent evolution of parameters as for example the strength of c-axes anisotropy and grain-size in the polycrystal. In general, mean grain-size decreases with depth as we drill through the Holocene ice and approach the Glacial material. The grain size variability with fine and coarse grain layers is extreme in the Holocene ice but decreases in the Glacial ice. Microstructure properties were examined, with the aim to investigate the relationship between the remarkable rapid evolution of CPO-pattern and grain properties evolution. Furthermore, the evolution of a grain-size dependent anisotropy, found in the first 350m of the ice core, is investigated and examined also in deeper sections of the core. The large-scale evolution of density distributions of c-axes orientations differ significantly from observations in deep ice cores made so far: A novel "hourglass shaped" girdle was observed, characterized by a high density of horizontally oriented c-axes within the vertical girdle. In some parts of the core, this shape develops into a "butterfly shaped" cross girdle, varying in intensity and strength. It is the first time that this cross girdle was observed in polar ice and by combining approaches considering different length scales, we aimed to verify one of our three hypotheses for its origin: a) activation of multiple dislocation slip systems (in analogy to quartz), b) a memory effect or reminiscent features from older deformation modes, further upstream or even outside of NEGIS or c) horizontal uniaxial extension causing an early onset of dynamic migration recrystallization. Small-scale high-resolution studies were carried out on several selected bags (0.55m long) from different depth regimes and were chosen as case studies to better understand the formation mechanisms of the novel CPO patterns found in the EGRIP ice core. One approach is the examination of thin sections (9 x 7 x 0.03cm) regarding the occurrence of patches of grains with similar orientations, which was observed in several samples from different depths. Small grains with similar orientations seem to cluster around large grains with a different orientation. High-resolution images (5 to 20µm/pix), derived with a Large Area Scan Macroscope (LASM), enable detailed investigations of grain shape, grain boundaries and sub-grain boundaries and therefore the possibility to find distinct features from deformation and recrystallisation in the microstructure. Grains are rarely horizontally aligned and usually show irregular, circular or rectangular shapes rather than elongated shapes. Characteristic for our case studies are also amoeboid grain shapes and sutured grain boundaries, typical features of grain boundary migration. Furthermore, layering, "sandwiched grains" and strong gradients in grain-size over distances of only a few centimetres were observed in several samples. Although still under progress, at the current state of investigation, combining fabric data and microstructure analysis, the novel CPO patterns found in the EGRIP ice core are strongly influenced by dynamic migration recrystallisation

    The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion

    Get PDF
    Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs) by the multiple peptide resistance factor (MprF) protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic phospholipid phosphatidylglycerol with l-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG) production and that several conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an important bacterial immune evasion mechanism and it may help to employ MprF as a target for new anti-virulence drugs
    • …
    corecore