
On Correctness of Data Structures under
Reads-Write Concurrency ?

Kfir Lev-Ari1, Gregory Chockler2, and Idit Keidar1

1 EE Department, Technion, Israel
2 CS Department, Royal Holloway, UK

Abstract. We study the correctness of shared data structures under
reads-write concurrency. A popular approach to ensuring correctness of
read-only operations in the presence of concurrent update, is read-set
validation, which checks that all read variables have not changed since
they were first read. In practice, this approach is often too conserva-
tive, which adversely affects performance. In this paper, we introduce a
new framework for reasoning about correctness of data structures under
reads-write concurrency, which replaces validation of the entire read-set
with more general criteria. Namely, instead of verifying that all read
shared variables still hold the values read from them, we verify abstract
conditions over the shared variables, which we call base conditions. We
show that reading values that satisfy some base condition at every point
in time implies correctness of read-only operations executing in parallel
with updates. Somewhat surprisingly, the resulting correctness guarantee
is not equivalent to linearizability, and is instead captured through two
new conditions: validity and regularity. Roughly speaking, the former re-
quires that a read-only operation never reaches a state unreachable in a
sequential execution; the latter generalizes Lamport’s notion of regular-
ity for arbitrary data structures, and is weaker than linearizability. We
further extend our framework to capture also linearizability. We illus-
trate how our framework can be applied for reasoning about correctness
of a variety of implementations of data structures such as linked lists.

1 Introduction

Motivation Concurrency is an essential aspect of computing nowadays. As part
of the paradigm shift towards concurrency, we face a vast amount of legacy
sequential code that needs to be parallelized. A key challenge for parallelization is
verifying the correctness of the new or transformed code. There is a fundamental
tradeoff between generality and performance in state-of-the-art approaches to
correct parallelization. General purpose methodologies, such as transactional
memory [13, 23] and coarse-grained locking, which do not take into account the

? This work was partially supported by the Intel Collaborative Research Institute for
Computational Intelligence (ICRI-CI), by the Israeli Ministry of Science, by a Royal
Society International Exchanges Grant, and by the Randy L. and Melvin R. Berlin
Fellowship in the Cyber Security Research Program.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

inner workings of a specific data structure, are out-performed by hand-tailored
fine-grained solutions [19]. Yet the latter are notoriously difficult to develop and
verify. In this work, we take a step towards mitigating this tradeoff.

It has been observed by many that correctly implementing concurrent modi-
fications of a data structure is extremely hard, and moreover, contention among
writers can severely hamper performance [21]. It is therefore not surprising that
many approaches do not allow write-write concurrency; these include the read-
copy-update (RCU) approach [18], flat-combining [12], coarse-grained readers-
writer locking [8], and pessimistic software lock-elision [1]. It has been shown
that such methodologies can perform better than ones that allow write-write
concurrency, both when there are very few updates relative to queries [18] and
when writes contend heavily [12]. We focus here on solutions that allow only
read-read and read-write concurrency.

A popular approach to ensuring correctness of read-only operations in the
presence of concurrent updates, is read-set validation, which checks that no
shared variables have changed since they were first read. In practice, this ap-
proach is often too conservative, which adversely affects performance. For exam-
ple, when traversing a linked list, it suffices to require that the last read node
is connected to the rest of the list; there is no need to verify the values of other
traversed nodes, since the operation no longer depends on them. In this paper,
we introduce a new framework for reasoning about correctness of concurrent
data structures, which replaces validation of the entire read-set with more gen-
eral conditions: instead of verifying that all read shared variables still hold the
values read from them, we verify abstract conditions over the variables. These
are captured by our new notion of base conditions.

Roughly speaking, a base condition of a read-only operation at time t, is
a predicate over shared variables, (typically ones read by the operation), that
determines the local state the operation has reached at time t. Base conditions
are defined over sequential code. Intuitively, they represent invariants the read-
only operation relies upon in sequential executions. We show that the operation’s
correctness in a concurrent execution depends on whether these invariants are
preserved by update operations executed concurrently with the read-only one.
We capture this formally by requiring each state in every read-only operation
to have a base point of some base condition, that is, a point in the execution
where the base condition holds. In the linked list example – it does not hurt to
see old values in one section of the list and new ones in another section, as long
as we read every next pointer consistently with the element it points to. Indeed,
this is the intuition behind the famous hand-over-hand locking (lock-coupling)
approach [20, 3].

Our framework yields a methodology for verifiable reads-write concurrency.
In essence, it suffices for programmers to identify base conditions for their se-
quential data structure’s read-only operations. Then, they can transform their
sequential code using means such as readers-writer locks or RCU, to ensure that
read-only operations have base points when run concurrently with updates.

It is worth noting that there is a degree of freedom in defining base conditions.
If coarsely defined, they can constitute the validity of the entire read-set, yielding
coarse-grained synchronization as in snapshot isolation and transactional mem-
ories. Yet using more precise observations based on the data structure’s inner
workings can lead to fine-grained base conditions and to better concurrency. Our
formalism thus applies to solutions ranging from validation of the entire read-set
[9], through multi-versioned concurrency control [5], which has read-only opera-
tions read a consistent snapshot of their entire read-set, to fine-grained solutions
that hold a small number of locks, like hand-over-hand locking.

Overview of Contributions This paper makes several contributions that arise
from our observation regarding the key role of base conditions. We observe that
obtaining base points of base conditions guarantees a property we call validity,
which specifies that a concurrent execution does not reach local states that are
not reachable in sequential ones. Intuitively, this property is needed in order to
avoid situations like division by zero during the execution of the operation. To
incorporate read-time order, we restrict base point locations to ones that fol-
low all operations that precede the read-only operation, and precedes ones that
ensue it. Somewhat surprisingly, this does not suffice for the commonly-used
correctness criterion of linearizability (atomicity) [14] or even sequential consis-
tency [15] (discussed in the full paper [17]). Rather, it guarantees a correctness
notion weaker than linearizability, similar to Lamport’s regularity semantics for
registers, which we extend here for general objects for the first time.

In Section 2, we present a formal model for shared memory data structure im-
plementations and executions, and define correctness criteria. Section 3 presents
our methodology for achieving regularity and validity: We formally define the no-
tion of a base condition, as well as base points, which link the sequentially-defined
base conditions to concurrent executions. We assert that base point consistency
implies validity, and that the more restricted base point condition, which we call
regularity base point consistency, implies regularity (formal proofs appear in the
full paper). We proceed to exemplify our methodology for a standard linked list
implementation, in Section 4 (see the full paper for more examples). In Section 5
we turn to extend the result for linearizability. We define a condition on update
operations, namely, having a single visible mutation point (SVMP), which along
with regularity base point consistency ensures linearizability.

We note that we see this paper as the first step in an effort to simplify rea-
soning about fine-grained concurrent implementations. It opens many directions
for future research, which we overview in Section 6. Due to space considerations,
some formal definitions and proofs are deferred to the full paper, as is our result
about sequential consistency.

Comparison with Other Approaches The regularity correctness condition was
introduced by Lamport [16] for registers. To the best of our knowledge, the
regularity of a data structure as we present in this paper is a new extension of
the definition.

Using our methodology, proving correctness relies on defining a base condi-
tion for every state in a given sequential implementation. One easy way to do
so is to define base conditions that capture the entire read-set, i.e., specify that
there is a point in the execution where all shared variables the operation has
read hold the values that were first read from them. But often, such a defini-
tion of base conditions is too strict, and spuriously excludes correct concurrent
executions. Our definition generalizes it and thus allows for more parallelism in
implementations.

Opacity [11] defines a sufficient condition for validity and linearizability, but
not a necessary one. It requires that every transaction see a consistent snapshot
of all values it reads, i.e., that all these values belong to the same sequentially
reachable state. We relax the restriction on shared states busing base conditions.

Snapshot isolation [4] guarantees that no operation ever sees updates of con-
current operations. This restriction is a special case of the possible base points
that our base point consistency criterion defines, and thus also implies our con-
dition for the entire read-set.

We prove that the SVMP condition along with regularity base point con-
sistency suffices for linearizability. There are mechanisms, for example, trans-
actional memory implementations [9], for which it is easy to see that these
conditions hold for base conditions that capture the entire read-set. Thus, the
theorems that we prove imply, in particular, correctness of such implementations.

In this paper we focus on correctness conditions that can be used for deriv-
ing a correct data structure that allows reads-write concurrency from a sequen-
tial implementation. The implementation itself may rely on known techniques
such as locking, RCU [18], pessimistic lock-elision [1], or any combinations of
those, such as RCU combined with fine-grained locking [2]. There are several
techniques, such as flat-combining [12] and read-write locking [8], that can nat-
urally expand such an implementation to support also write-write concurrency
by adding synchronization among update operations.

Algorithm designers usually prove linearizability of by identifying a serializa-
tion point for every operation, showing the existence of a specific partial ordering
of operations [7], or using rely-guarantee reasoning [24]. Our approach simplifies
reasoning – all the designer needs to do now is identify a base condition for
every state in the existing sequential implementation, and show that it holds
under concurrency. This is often easier than finding and proving serialization
points, as we exemplify. In essence, we break up the task of proving data struc-
ture correctness into a generic part, which we prove once and for all, and a
shorter, algorithm-specific part. Given our results, one does not need to prove
correctness explicitly (e.g., using linearization points or rely-guarantee reason-
ing, which typically result in complex proofs). Rather, it suffices to prove the
much simpler conditions that read-only operations have base points and updates
have an SVMP, and linearizability follows from our theorems. Another approach
that simplifies verifiable parallelization is to re-write the data structure using
primitives that guarantee linearizability such as LLX and SCX [6]. Whereas the
latter focuses on non-blocking concurrent data structure implementations using

their primitive, our work is focused on reads-write concurrency, and does not
restrict the implementation; in particular, we target lock-based implementations
as well as non-blocking ones.

2 Model and Correctness Definitions

We consider a shared memory model where each process performs a sequence
of operations on shared data structures. The data structures are implemented
using a set X = {x1, x2, ...} of shared variables. The shared variables support
atomic read and write operations (i.e., are atomic registers), and are used to
implement more complex data structures. The values in the xi’s are taken from
some domain V.

2.1 Data Structures and Sequential Executions

A data structure implementation (algorithm) is defined as follows:

– A set of states, S, were a shared state s ∈ S is a mapping s : X → V,
assigning values to all shared variables. A set S0 ⊆ S defines initial states.

– A set of operations representing methods and their parameters. For example,
find(7) is an operation. Each operation op is a state machine defined by:
• A set of local states Lop, which are usually given as a set of mappings l

of values to local variables. For example, for a local state l, l(y) refers to
the value of the local variable y in l. Lop contains a special initial local
state ⊥∈ Lop.

• A deterministic transition function τop(Lop×S)→ Steps×Lop×S where
step∈ Steps is a transition label, which can be invoke, a ← read(xi),
write(xi,v), or return(v) (see the full paper for more details). Note that
there are no atomic read-modify-write steps. Invoke and return steps
interact with the application while read and write steps interact with
the shared memory.

We assume that every operation has an isolated state machine, which begins
executing from local state ⊥.

For a transition τ(l, s) = 〈step, l′, s′〉, l determines the step. If step is an
invoke, return, or write step, then l′ is uniquely defined by l. If step is a read
step, then l′ is defined by l and s, specifically, read(xi) is determined by s(xi).
Since only write steps can change the content of shared variables, s = s′ for
invoke, return, and read steps.

For the purpose of our discussion, we assume the entire shared memory is
statically allocated. This means that every read step is defined for every shared
state in S. One can simulate dynamic allocation in this model by writing to
new variables that were not previously used. Memory can be freed by writing a
special value, e.g., “invalid”, to it.

A state consists of a local state l and a shared state s. By a slight abuse of
terminology, in the following, we will often omit either shared or local component

of the state if its content is immaterial to the discussion. A sequential execution
of an operation is an alternating sequence of steps and states with transitions
being according to τ . A sequential execution of a data structure is a sequence
of operation executions that begins in an initial state; see the full paper for a
formal definition. A read-only operation is an operation that does not perform
write steps in any execution. All other operations are update operations.

A state is sequentially reachable if it is reachable in some sequential execution
of a data structure. By definition, every initial state is sequentially reachable.
The post-state of an invocation of operation o in execution µ is the shared state
of the data structure after o’s return step in µ; the pre-state is the shared state
before o’s invoke step. Recall that read-only operations do not change the shared
state and execution of update operations is serial. Therefore, every pre-state
and post-state of an update operation in µ is sequentially reachable. A state st′

is sequentially reachable from a state st if there exists a sequential execution
fragment that starts at st and ends at st′.

In order to simplify the discussion of initialization, we assume that every
execution begins with a dummy (initializing) update operation that does not
overlap any other operation.

2.2 Correctness Conditions for Concurrent Data Structures

A concurrent execution fragment of a data structure is a sequence of interleaved
states and steps of different operations, where state consists of a set of local
states {li, ..., lj} and a shared state sk, where every li is a local state of a pending
operation. A concurrent execution of a data structure is a concurrent execution
fragment of a data structure that starts from an initial shared state. Note that
a sequential execution is a special case of concurrent execution. An example of
a concurrent execution is detailed in the full paper.

A single-writer multiple-reader (SWMR) execution is one in which update
operations are not interleaved; read-only operations may interleave with other
read-only operations and with update operations. In the remainder of this paper
we discuss only SWMR executions.

For an execution σ of data structure ds, the history of σ, denoted Hσ, is
the subsequence of σ consisting of the invoke and return steps in σ (with their
respective return values). For a history Hσ, complete(Hσ) is the subsequence
obtained by removing pending operations, i.e., operations with no return step,
from Hσ. A history is sequential if it begins with an invoke step and consists of
an alternating sequence of invoke and return steps.

A data structure’s correctness in sequential executions is defined using a
sequential specification, which is a set of its allowed sequential histories.

Given a correct sequential data structure, we need to address two aspects
when defining its correctness in concurrent executions. As observed in the defi-
nition of opacity [11] for memory transactions, it is not enough to ensure serial-
ization of completed operations, we must also prevent operations from reaching
undefined states along the way. The first aspect relates to the data structure’s

external behavior, as reflected in method invocations and responses (i.e., histo-
ries):

Linearizability and Regularity A history Hσ is linearizable [14] if there exists
H ′σ that can be created by adding zero or more return steps to Hσ, and there
is a sequential permutation π of complete(H ′σ), such that: (1) π belongs to the
sequential specification of ds; and (2) every pair of operations that are not in-
terleaved in σ, appear in the same order in σ and in π. A data structure ds is
linearizable, also called atomic, if for every execution σ of ds, Hσ is linearizable.

We next extend Lamport’s regular register definition [16] for SWMR data
structures (we do not discuss regularity for MWMR executions, which can be
defined similarly to [22]). A data structure ds is regular if for every execution
σ of ds, and every read-only operation ro ∈ Hσ, if we omit all other read-only
operations from Hσ, then the resulting history is linearizable.

Validity The second correctness aspect is ruling out bad cases like division by
zero or access to uninitialized data. It is formally captured by the following
notion of validity : A data structure is valid if every local state reached in an
execution of one of its operations is sequentially reachable. We note that, like
opacity, validity is a conservative criterion, which rules out bad behavior without
any specific data structure knowledge. A data structure that does not satisfy
validity may be correct, but proving that requires care.

3 Base Conditions, Validity and Regularity

3.1 Base Conditions and Base Points

Intuitively, a base condition establishes some link between the local state an
operation reaches and shared variables the operation has read before reaching
this state. It is given as a predicate Φ over shared variable assignments. Formally:

Definition 1 (Base Condition). Let l be a local state of an operation op.
A predicate Φ over shared variables is a base condition for l if every sequential
execution of op starting from a shared state s such that Φ(s) = true, reaches l.

For completeness, we define a base condition for stepi in an execution µ to
be a base condition of the local state that precedes stepi in µ.

Consider a data structure consisting of an array of elements v and a variable
lastPos, whose last element is read by the function readLast. An example of
an execution fragment of readLast that starts from state s1 (depicted in Figure
1) and the corresponding base conditions appear in Algorithm 1. The readLast
operation needs the value it reads from v[tmp] to be consistent with the value
of lastPos that it reads into tmp because if lastPos is newer than v[tmp], then
v[tmp] may contain garbage. The full paper details base conditions for every
possible local state of readLast.

v[0] v[1] v[2] ...
35 7 99 ...

lastPos
1

(a) s1

v[0] v[1] v[2] ...
2 7 15 ...

lastPos
1

(b) s2
Figure 1: Two shared states satisfying the same base condition Φ3 : lastPos =
1 ∧ v[1] = 7.

local state
l1 : {}
l2 : {tmp = 1}
l3 : {tmp = 1, res = 7}

base condition
Φ1 : true
Φ2 : lastPos = 1
Φ3 : lastPos = 1 ∧ v[1] = 7

Function readLast()
tmp← read(lastPos)
res← read(v[tmp])
return(res)

Algorithm 1: The local states and base conditions of readLast when executed
from s1. The shared variable lastPos is the index of the last updated value in
array v. See Algorithm 2 for corresponding update operations.

The predicate Φ3 : lastPos = 1∧ v[1] = 7 is a base condition of l3 because l3
is reachable from any shared state in which lastPos = 1 and v[1] = 7 (e.g., s2
in Figure 1), by executing lines 1-2.

We now turn to define base points of base conditions, which link a local state
with base condition Φ to a shared state s where Φ(s) holds.

Definition 2 (Base Point). Let µ be a concurrent execution, ro be a read-
only operation executed in µ, and Φt be a base condition of the local state and
step at index t in µ. An execution fragment of ro in µ has a base point for point
t with Φt, if there exists a sequentially reachable post-state s in µ, called a base
point of t, such that Φt(s) holds.

Note that together with Definition 1, the existence of a base point s implies
that t is reachable from s in all sequential runs starting from s.

We say that a data structure ds satisfies base point consistency if every point
t in every execution of every read-only operation ro of ds has a base point with
some base condition of t.

The possible base points of read-only operation ro are illustrated in Figure 2.
To capture real-time order requirements we further restrict base point locations.

ro
uo uo uououo uo uo

Figure 2: Possible locations of ro’s base points.

Definition 3 (Regularity Base Point). A base point s of a point t of ro in
a concurrent execution µ is a regularity base point if s is the post-state of either
an update operation executed concurrently with ro in µ or of the last update
operation that ended before ro’s invoke step in µ.

The possible regularity base points of a read-only operation are illustrated
in Figure 3. We say that a data structure ds satisfies regularity base point con-
sistency if it satisfies base point consistency, and every return step t in every
execution of every read-only operation ro of ds has a regularity base point with
a base condition of t. Note, in particular, that the base point location is only
restricted for the return step, since the return value is determined by its state.

ro
uo uo uououo uo uo

Figure 3: Possible locations of ro’s regularity base points.

Function writeSafe(val)
i ← read(lastPos)
write(v[i+ 1], val)
write(lastPos, i+ 1)

Function writeUnsafe(val)
i ← read(lastPos)
write(lastPos, i+ 1)
write(v[i+ 1], val)

Algorithm 2: Unlike writeUnsafe, writeSafe ensures a regularity base point
for every local state of readLast ; it guarantees that any concurrent readLast
operation sees values of lastPos and v[tmp] that occur in the same sequentially
reachable post-state. It also has a single visible mutation point (as defined in
Section 5), and hence linearizability is established.

In Algorithm 2 we see two versions of an update operation: writeSafe guaran-
tees the existence of a base point for every local state of readLast (Algorithm 1),
and writeUnsafe does not. As shown in the full paper, writeUnsafe can cause
a concurrent readLast operation interleaved between its two write steps to see
values of lastPos and v[lastPos] that do not satisfy readLast ’s return step’s base
condition, and to return an uninitialized value.

3.2 Deriving Correctness from Base Points

In the full paper we prove the following theorems:

Theorem 1 (Validity). If a data structure ds satisfies base point consistency,
then ds is valid.

Theorem 2 (Regularity). If a data structure ds satisfies regularity base point
consistency, then ds is regular.

4 Using Our Methodology

We now demonstrate the simplicity of using our methodology. Based on The-
orems 1 and 2 above, the proof for correctness of a data structure (such as a

linked list) becomes almost trivial. We look at three linked list implementations:
Algorithm 3, which assumes managed memory (i.e., automatic garbage collec-
tion), an algorithm that uses RCU methodology, and an algorithm based on
hand-over-hand locking (the latter two are deferred to the full paper for space
limitations).

For Algorithm 3, we first prove that the listed predicates are indeed base
conditions, and next prove that it satisfies regularity base point consistency. By
doing so, and based on Theorem 2, we get that the algorithm satisfies both
validity and regularity.

Function remove(n)
p ← ⊥
next ← read(head.next)
while next 6= n

p ← next
next← read(p.next)

write(p.next, n.next)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗⇒ n

Φ3 : head
∗⇒ n

Function readLast()
n ← ⊥
next ← read(head.next)
while next 6=⊥

n ← next
next← read(n.next)

return(n)

Algorithm 3: A linked list implementation in a memory-managed environ-
ment. For simplicity, we do not deal with boundary cases: we assume that a
node can be found in the list prior to its deletion, and that there is a dummy
head node.

Consider a linked list node stored in local variable n (we assume the en-

tire node is stored in n, including the value and next pointer). Here, head
∗⇒

n denotes that there is a set of shared variables {head, n1, ..., nk} such that
head.next = n1 ∧ n1.next = n2 ∧ ... ∧ nk = n, i.e., that there exists some path
from the shared variable head to n. Note that n is the only element in this
predicate that is associated with a specific read value. We next prove that this
defines base conditions for Algorithm 3.

Lemma 3. In Algorithm 3, Φi defined therein is a base condition of the i-th
step of readLast.

Proof. For Φ1 the claim is vacuously true. For Φ2, let l be a local state where
readLast is about to perform the second read step in readLast ’s code, meaning
that l(next) 6=⊥. Note that in this local state both local variables n and next

hold the same value. Let s be a shared state in which head
∗⇒ l(n). Every

sequential execution from s iterates over the list until it reaches l(n), hence the
same local state where n = l(n) and next = l(n) is reached.

For Φ3, Let l be a local state where readLast has exited the while loop, hence
l(n).next =⊥. Let s be a shared state such that head

∗⇒ l(n). Since l(n) is

reachable from head and l(n).next =⊥, every sequential execution starting from
s exits the while loop and reaches a local state where n = l(n) and next =⊥. ut

Lemma 4. In Algorithm 3, if a node n is read during concurrent execution µ
of readLast, then there is a shared state s in µ such that n is reachable from
head in s and readLast is pending.

Proof. If n is read in operation readLast from a shared state s, then s exists
concurrently with readLast. The operation readLast starts by reading head, and
it reaches n.

Thus, n must be linked to some node n′ at some point during readLast. If n
was connected (or added) to the list while n′ was still reachable from the head,
then there exists a state where n is reachable from the head and we are done.
Otherwise, assume n is added as the next node of n′ at some point after n′ is
already detached from the list. Nodes are only added via insertLast, which is not
executed concurrently with any remove operation. This means nodes cannot be
added to detached elements of the list. A contradiction. ut

The following lemma, combined with Theorem 2 above, guarantees that Al-
gorithm 3 satisfies regularity.

Lemma 5. Every local state of readLast in Algorithm 3 has a regularity base
point.

Proof. We show regularity base points for predicates Φi, proven to be base points
in Lemma 3.

The claim is vacuously true for Φ1. We now prove for Φ2 and Φ3 : head
∗⇒ n.

By Lemma 4 we get that there is a shared state s where head
∗⇒ n and readLast

is pending. Note that n’s next field is included in s as part of n’s value. Since
both update operations - remove and insertLast - have a single write step, every
shared state is a post-state of an update operation. Specifically this means that
s is a sequentially reachable post-state, and because readLast is pending, s is
one of the possible regularity base points of readLast. ut

5 Linearizability

We first show that regularity base point consistency is insufficient for lineariz-
ability. In Figure 4 we show an example of a concurrent execution where two
read-only operations ro1 and ro2 are executed sequentially, and both have regu-
larity base points. The first operation, ro1, reads the shared variable first name
and returns Joe, and ro2 reads the shared variable surname and returns Doe. An
update operation uo updates the data structure concurrently, using two write
steps. The return step of ro1 is based on the post-state of uo, whereas ro2’s
return step is based on the pre-state of uo. There is no sequential execution of
the operations where ro1 returns Joe and ro2 returns Doe.

Thus, an additional condition is required for linearizability. We suggest single
visible mutation point (SVMP), which adds a restriction regarding the behaviour

uo

Shared variables:
first name = Ron
surname = Doe

Shared variables:
first name = John
 surname = Smithwrite(first name, John) write(surname, Smith)

return surname:
return(Doe)

ro2

return first name:
return(John)

ro1

Figure 4: Every local state of ro1 and ro2 has a regularity base point, and still
the execution is not linearizable. If ro1 and ro2 belong to the same process, then
the execution is not even sequentially consistent (see the full paper).

of update operations. A data structure that satisfies SVMP and regularity base
point consistency is linearizable.

The SVMP condition is related to the number of visible mutation points an
execution of an update operation has. Intuitively, a visible mutation point in an
execution of an update operation is a write step that writes to a shared variable
that might be read by a concurrent operation. A more formal definition ensues.

Let α be an execution fragment of op starting from shared state s. We define
αt as the shortest prefix of α including t steps of op, and we denote by stepsop(α)
the subsequence of α consisting of the steps of op in α. We say that αt and
αt−1 are indistinguishable to a concurrent read-only operation ro if for every
concurrent execution µt starting from s and consisting only of steps of ro and
αt, and concurrent execution µt−1 starting from s and consisting only of steps
of ro and αt−1, stepsro(µt) = stepsro(µt−1). In other words, ro’s executions are
not unaffected by the t’th step of op.

If αt and αt−1 are indistinguishable to a concurrent read-only operation ro,
then point t is a silent point for ro in α. A point that is not silent is a visible
mutation point for ro in α.

Definition 4 (SVMP condition). A data structure ds satisfies the SVMP
condition if for each update operation uo of ds, in every execution of uo from
every sequentially reachable shared state, uo has at most one visible mutation
point, for all possible concurrent read-only operations ro of ds.

Note that a read-only operation may see mutation points of multiple updates.
Hence, if a data structure satisfies the SVMP condition and not base point
consistency, it is not necessarily linearizable. For example, in Figure 5 we see
two sequential single visible mutation point operations, and a concurrent read-
only operation ro that counts the number of elements in a list. Since ro only
sees one element of the list, it returns 1, even though there is no shared state in
which the list is of size 1. Thus, the execution is not linearizable or even regular.

Intuitively, if a data structure ds satisfies the SVMP condition, then all of its
shared states are sequentially reachable post-states. If ds also satisfies regularity
base point consistency, then the visible mutation point condition guarantees that
the order among base points of non-interleaved read-only operations preserves
the real time order among those operations.

ro
A.next = NULL

return count = 1
Read head

list size = 3 list size = 2list size = 2
Remove last

uo2uo1

Add first

ro

A
head

Bnext

(a) The initial state.

head

nextAnext

ro

C B

(b) uo1’s post-state.

C
head

Anext

ro

(c) uo2’s post-state.

Figure 5: Every update operation has a single visible mutation point, but the
execution is not linearizable.

In Algorithm 3, the remove operation has a single visible mutation point,
which is the step that writes to p.next. Thus, from Theorem 6 below, this im-
plementation is linearizable. The theorem is proven in the full paper.

Theorem 6 (Linearizability). If data structure ds satisfies SVMP and regu-
larity base point consistency, then ds is linearizable.

6 Conclusions and Future Directions

We introduced a new framework for reasoning about correctness of data struc-
tures in concurrent executions, which facilitates the process of verifiable paral-
lelization of legacy code. Our methodology consists of identifying base conditions
in sequential code, and ensuring regularity base points for these conditions under
concurrency. This yields two essential correctness aspects in concurrent execu-
tions – the internal behaviour of the concurrent code, which we call validity, and
the external behaviour, in this case regularity, which we have generalized here
for data structures. Linearizability is guaranteed if the implementation further
satisfies the SVMP condition.

We believe that this paper is only the tip of the iceberg, and that many
interesting connections can be made using the observations we have presented.
For a start, a natural expansion of our work would be to consider also multi-
writer data structures. Another interesting direction to pursue is to use our
methodology for proving the correctness of more complex data structures than
the linked lists in our examples.

Currently, using our methodology involves manually identifying base condi-
tions. It would be interesting to create tools for suggesting a base condition for
each local state. One possible approach is to use a dynamic tool that identifies
likely program invariants, as in [10], and suggests them as base conditions. Al-
ternatively, a static analysis tool can suggest base conditions, for example by
iteratively accumulating read shared variables and omitting ones that are no

longer used by the following code (i.e., shared variables whose values are no
longer reflected in the local state).

Another interesting direction for future work might be to define a synchro-
nization mechanism that uses the base conditions in a way that is both general
purpose and fine-grained. A mechanism of this type will use default conservative
base conditions, such as verifying consistency of the entire read-set for every
local state, or two-phase locking of accessed shared variables. In addition, the
mechanism will allow users to manually define or suggest finer-grained base con-
ditions. This can be used to improve performance and concurrency, by validating
the specified base condition instead of the entire read-set, or by releasing locks
when the base condition no longer refers to the value read from them.

From a broader perspective, we showed how correctness can be derived from
identifying inner relations in a sequential code, (in our case, base conditions),
and maintaining those relations in concurrent executions (via base points). It
may be possible to use similar observations in other models and contexts, for
example, looking at inner relations in synchronous protocol, in order to derive
conditions that ensure their correctness in asynchronous executions.

And last but not least, the definitions of internal behaviour correctness can
be extended to include a weaker conditions than validity, (which is quiet conser-
vative). These weaker conditions will handle local states in concurrent executions
that are un-reachable via sequential executions but still satisfy the inner correct-
ness of the code.

Acknowledgements

We thank Naama Kraus, Dahlia Malkhi, Yoram Moses, Dani Shaket, Noam
Shalev, and Sasha Spiegelman for helpful comments and suggestions.

References

1. Afek, Y., Matveev, A., Shavit, N.: Pessimistic software lock-elision. In: Proceed-
ings of the 26th International Conference on Distributed Computing. pp. 297–311.
DISC’12, Springer-Verlag, Berlin, Heidelberg (2012)

2. Arbel, M., Attiya, H.: Concurrent updates with rcu: Search tree as an example. In:
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing.
pp. 196–205. PODC ’14, ACM, New York, NY, USA (2014)

3. Bayer, R., Schkolnick, M.: Readings in database systems. chap. Concurrency of
Operations on B-trees, pp. 129–139. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1988)

4. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ansi sql isolation levels. SIGMOD Rec. 24(2), 1–10 (May 1995)

5. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1986)

6. Brown, T., Ellen, F., Ruppert, E.: Pragmatic primitives for non-blocking data
structures. In: PODC. pp. 13–22 (2013)

7. Chockler, G., Lynch, N., Mitra, S., Tauber, J.: Proving atomicity: An assertional
approach. In: Proceedings of the 19th International Conference on Distributed
Computing. pp. 152–168. DISC’05, Springer-Verlag, Berlin, Heidelberg (2005)

8. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with ”readers” and
”writers”. Commun. ACM 14(10), 667–668 (1971)

9. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: Proc. of the 20th
International Symposium on Distributed Computing (DISC 2006). pp. 194–208
(2006)

10. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. In: Proceedings of the
21st International Conference on Software Engineering. pp. 213–224. ICSE ’99,
ACM, New York, NY, USA (1999)

11. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. pp. 175–184. PPoPP ’08, ACM, New York, NY, USA (2008)

12. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of the 22Nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures. pp. 355–364. SPAA ’10,
ACM, New York, NY, USA (2010)

13. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (May 1993)

14. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (July 1990)

15. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (September 1979)

16. Lamport, L.: On interprocess communication. part ii: Algorithms. Distributed
Computing 1(2), 86–101 (1986)

17. Lev-Ari, K., Chockler, G., Keidar, I.: On correctness of data structures under
reads-write concurrency. Tech. Rep. CCIT 866, EE, Technion (August 2014)

18. McKenney, P.E., Slingwine, J.D.: Read-copy update: using execution history to
solve concurrency problems, parallel and distributed computing and systems (1998)

19. Moir, M., Shavit, N.: Concurrent data structures. In: Handbook of Data Struc-
tures and Applications, D. Metha and S. Sahni Editors. pp. 47–14 47–30 (2007),
chapman and Hall/CRC Press

20. Samadi, B.: B-trees in a system with multiple users. Inf. Process. Lett. 5(4), 107–
112 (1976)

21. Scherer, III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing. pp. 240–248. PODC ’05,
ACM, New York, NY, USA (2005)

22. Shao, C., Welch, J.L., Pierce, E., Lee, H.: Multiwriter consistency conditions for
shared memory registers. SIAM J. Comput. 40(1), 28–62 (2011)

23. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing. pp.
204–213. PODC ’95, ACM, New York, NY, USA (1995)

24. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. pp. 129–136.
PPoPP ’06, ACM, New York, NY, USA (2006)

