21 research outputs found

    The role of Phox2B in chromaffin cell development

    Get PDF
    AbstractPhox2B, a homeodomain transcription factor closely related to Phox2A, is expressed in peripheral and central noradrenergic neurons. In neural crest (NC) derivatives Phox2B is restricted to sympathetic and parasympathetic ganglia, enteric neurons, and adrenal and extraadrenal chromaffin cells. Similar to MASH-1, Phox2B has been implicated in synchronizing pan-neuronal and catecholaminergic phenotype-specific aspects of neurogenesis. The role of Phox2B for the differentiation of the neuroendocrine NC derivatives, the adrenal medullary chromaffin cells, has not been explored. We have previously reported that in MASH-1-deficient mice most chromaffin cells are arrested at the early neuroblast stage and lack catecholaminergic differentiation. We show now that in Phox2B knockout/lacZ knockin mice the maturation of presumptive chromaffin cells is arrested at an even earlier stage of development. The cells lack the catecholaminergic marker enzyme TH and fail to form a centrally located medulla. In contrast to MASH-1 (−/−) mice they do not express dHand, Phox2A, c-ret, neurofilament, neuron-specific tubulin, and NCAM and appear ultrastructurally more immature. Many of these cells die by apoptosis. Despite the complete lack of differentiation, few lacZ-positive adrenal cells can still be found at E16.5. We conclude that Phox2B regulates very early events in the differentiation of adrenal chromaffin cells distinct to steps, which essentially require MASH-1

    MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells

    Get PDF
    The neural-crest-derived sympathoadrenal cell lineage gives rise to sympathetic neurons and to endocrine chromaffin cells of the adrenal medulla. Both cell types express a largely overlapping set of genes, including those coding for the molecular machinery related to the synthesis and exocytotic release of catecholamines. During their early development, sympathetic neurons and chromaffin cells rely on a shared transcription factor network that controls the establishment of these common features. Despite many similarities, mature sympathetic neurons and chromaffin cells significantly differ regarding their morphology and function. Most prominently, sympathetic neurons possess axons that are absent in mammalian adrenal chromaffin cells. The molecular mechanism underlying the divergent development of sympathoadrenal cells into neuronal and endocrine cells remains elusive. Mutational inactivation of the ribonuclease dicer hints at the importance of microRNAs in this diversification. We show here that miR-124 is detectable in developing sympathetic neurons but absent in chromaffin cell precursors. We further demonstrate that miR- 124 promotes neurite elongation when transfected into cultured chromaffin cells indicating its capability to support the establishment of a neuronal morphology in non- neuronal sympathoadrenal cells. Our results also show that treatment of PC12 cells with the neurotrophin nerve growth factor leads to an upregulation of miR-124 expression and that inhibition of miR-124 reduces nerve-growth-factor-induced neurite outgrowth in PC12 cells. Thus, our data indicate that miR-124 contributes to the establishment of specific neuronal features in developing sympathoadrenal cells

    Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development

    Get PDF
    Background: Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs) emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results: We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of "chromaffin" granules were significantly increased. Conclusions: BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype

    The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons

    Get PDF
    The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered

    Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia

    Full text link

    Proliferation and differentiation of embryonic chick sympathetic neurons: Effects of ciliary neurotropic factor.

    Get PDF
    At early developmental stages (embryonic day 7, E7), chick paravertebral sympathetic ganglia contain a cell population that divides in culture while expressing various neuronal properties. In an attempt to identify factors that control neuronal proliferation, we found that ciliary neurotrophic factor (CNTF) specifically inhibits the proliferation of those cells expressing neuronal markers. In addition, CNTF affects the differentiation of sympathetic ganglion cells by inducing the expression of vasoactive intestinal peptide immunoreactivity (VIP-IR). After 1 day in culture, tyrosine hydroxylase immunoreactivity (TH-I R) was expressed by about 86% of the cells whereas VIP-IR was virtually absent. In the presence of CNTF, 50%-60% of the cells expressed VIP-IR after 4 days in culture; however, none of the cells expressed VIP-IR in the absence of CNTF. These results, and the demonstration of cells that express both VIP and TH-IR, indicate that VIP is induced in cells that initially express tyrosine hydroxylase. The findings suggest a potential role for CNTF as a factor affecting the proliferation and differentiation of developing sympathetic neurons

    Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies

    No full text
    Abstract Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system

    The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system

    No full text
    During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected
    corecore