13 research outputs found

    Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel

    Get PDF
    In this study, the Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI) High Resolution Visible channel (HRV) is used in synergy with the narrow band MSG-SEVIRI channels for daytime fog detection. A new algorithm, named MSG-SEVIRI SatFog, has been designed and implemented. MSG-SEVIRI SatFog provides the indication of the presence of fog in near real time and at the high spatial resolution of the HRV channel. The HRV resolution is useful for detecting small scale daytime fog that would be missed in the MSG-SEVIRI low spatial resolution channels. By combining textural, physical and tonal tests, a distinction between fog and low stratus is performed for pixels identified as low/middle clouds or clear by the Classification-MAsk Coupling of Statistical and Physical Methods (C-MACSP) cloud detection algorithm. Suitable thresholds have been determined using a specific dataset covering different geographical areas, seasons and time of the day. MSG-SEVIRI SatFog is evaluated against METeorological Aerodrome Reports (METAR) data observations. Evaluation results in an accuracy of 69.9%, a probability of detection of 68.7%, a false alarm ratio of 31.3% and a probability of false detection of 30.0%

    Competence Centre ICDI per Open Science, FAIR, ed EOSC - Mission, Strategia e piano d'azione

    Get PDF
    This document presents the mission and strategy of the Italian Competence Centre on Open Science, FAIR, and EOSC. The Competence Centre is an initiative born within the Italian Computing and Data Infrastructure (ICDI), a forum created by representatives of major Italian Research Infrastructures and e-Infrastructures, with the aim of promoting sinergies at the national level, and optimising the Italian participation to European and global challenges in this field, including the European Open Science Cloud (EOSC), the European Data Infrastructure (EDI) and HPC. This working paper depicts the mission and objectives of the ICDI Competence Centre, a network of experts with various skills and competences that are supporting the national stakeholders on topics related to Open Science, FAIR principles application and participation to the EOSC. The different actors and roles are described in the document as well as the activities and services offered, and the added value each stakeholder can find the in Competence Centre. The tools and services provided, in particular the concept for the portal, though which the Centre will connect to the national landscape and users, are also presented

    The Role of Emissivity in the Detection of Arctic Night Clouds

    No full text
    Detection of clouds over polar areas from satellite radiometric measurements in the visible and IR atmospheric window region is rather difficult because of the high albedo of snow, possible ice covered surfaces, very low humidity, and the usual presence of atmospheric temperature inversion. Cold and highly reflective polar surfaces provide little thermal and visible contrast between clouds and the background surface. Moreover, due to the presence of temperature inversion, clouds are not always identifiable as being colder than the background. In addition, low humidity often causes polar clouds to be optically thin. Finally, polar clouds are usually composed of a mixture of ice and water, which leads to an unclear spectral signature. Single and bi-spectral threshold methods are sometimes inappropriate due to a large variability of surface emissivity and cloud conditions. The objective of this study is to demonstrate the crucial role played by surface emissivity in the detection of polar winter clouds and the potential improvement offered by infrared hyperspectral observations, such as from the Infrared Atmospheric Sounding Interferometer (IASI). In this paper a new approach for cloud detection is proposed and validated exploiting active measurements from satellite sensors, i.e., the CloudSat cloud profiling radar (CPR) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). For a homogenous IASI field of view (FOVs), the proposed cloud detection scheme tallies with the combined CPR and CALIOP product in classifying 98.11% of the FOVs as cloudy and also classifies 97.54% of the FOVs as clear. The Hansen Kuipers discriminant reaches 0.95

    A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1

    No full text
    This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish clear sky versus ice and liquid clouds from microwave sounder (MWS) observations. The MWS instrument—scheduled to be onboard the first satellite of the Eumetsat Polar System Second-Generation (EPS-SG) series, MetOp-SG A1—has a direct inheritance from advanced microwave sounding unit A (AMSU-A) and the microwave humidity sounder (MHS) microwave instruments. Real observations from the MWS sensor are not currently available as its launch is foreseen in 2024. Thus, a simulated dataset of atmospheric states and associated MWS synthetic observations have been produced through radiative transfer calculations with ERA5 real atmospheric profiles and surface conditions. The developed algorithm has been validated using spectral observations from the AMSU-A and MHS sounders. While ERA5 atmospheric profiles serve as references for the model development and its validation, observations from AVHRR cloud mask products provide references for the AMSU-A/MHS model evaluation. The results clearly show the NN algorithm’s high skills to detect clear, ice and liquid cloud conditions against a benchmark. In terms of overall accuracy, the NN model features 92% (88%) on the ocean and 87% (85%) on land, for the MWS (AMSU-A/MHS)-simulated dataset, respectively

    Improvement of Hourly Surface Solar Irradiance Estimation Using MSG Rapid Scanning Service

    No full text
    The purpose of this work is to explore the effect of temporal sampling on the accuracy of the hourly mean Surface Solar Irradiance (SSI) estimation. An upgraded version of the Advanced Model for the Estimation of Surface Solar Irradiance from Satellite (AMESIS), exploiting data from the Meteosat Second Generation Rapid Scanning Service (MSG-RSS), has been used to evaluate the SSI. The assessment of the new version of AMESIS has been carried out against data from two pyranometers located in Southern (Tito) and Northern (Ispra) Italy at an altitude of 760 m and 220 m, respectively. The statistical analysis of the comparison between hourly mean SSI estimates based on temporal sampling every five minutes shows a quantitative improvement compared to those based on 15-minute sampling. In particular, for the whole dataset in Tito, the correlation increases from 0.979 to 0.998, the Root Mean Square Error (RMSE) decreases from 45.16 W/m2 to 13.19 W/m2 and the Mean Bias Error (MBE) is reduced from −0.67 W/m2 to −0.02 W/m2. For the whole dataset in Ispra, the correlation increases from 0.995 to 0.998, the RMSE decreases from 24.85 W/m2 to 15.59 W/m2, whereas the MBE increases from 3.84 W/m2 to 4.58 W/m2. This preliminary assessment shows that higher temporal sampling can improve SSI monitoring over areas featuring frequent and rapid solar irradiance variation

    Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel

    No full text
    In this study, the Meteosat Second Generation (MSG)—Spinning Enhanced Visible and Infrared Imager (SEVIRI) High Resolution Visible channel (HRV) is used in synergy with the narrow band MSG-SEVIRI channels for daytime fog detection. A new algorithm, named MSG-SEVIRI SatFog, has been designed and implemented. MSG-SEVIRI SatFog provides the indication of the presence of fog in near real time and at the high spatial resolution of the HRV channel. The HRV resolution is useful for detecting small scale daytime fog that would be missed in the MSG-SEVIRI low spatial resolution channels. By combining textural, physical and tonal tests, a distinction between fog and low stratus is performed for pixels identified as low/middle clouds or clear by the Classification-MAsk Coupling of Statistical and Physical Methods (C-MACSP) cloud detection algorithm. Suitable thresholds have been determined using a specific dataset covering different geographical areas, seasons and time of the day. MSG-SEVIRI SatFog is evaluated against METeorological Aerodrome Reports (METAR) data observations. Evaluation results in an accuracy of 69.9%, a probability of detection of 68.7%, a false alarm ratio of 31.3% and a probability of false detection of 30.0%

    Analysis of Livorno Heavy Rainfall Event: Examples of Satellite-Based Observation Techniques in Support of Numerical Weather Prediction

    No full text
    This study investigates the value of satellite-based observational algorithms in supporting numerical weather prediction (NWP) for improving the alert and monitoring of extreme rainfall events. To this aim, the analysis of the very intense precipitation that affected the city of Livorno on 9 and 10 September 2017 is performed by applying three remote sensing techniques based on satellite observations at infrared/visible and microwave frequencies and by using maps of accumulated rainfall from the weather research and forecasting (WRF) model. The satellite-based observational algorithms are the precipitation evolving technique (PET), the rain class evaluation from infrared and visible observations (RainCEIV) technique and the cloud classification mask coupling of statistical and physics methods (C-MACSP). Moreover, the rain rates estimated by the Italian Weather Radar Network are also considered to get a quantitative evaluation of RainCEIV and PET performance. The statistical assessment shows good skills for both the algorithms (for PET: bias = 1.03, POD = 0.76, FAR = 0.26; for RainCEIV: bias = 1.33, POD = 0.77, FAR = 0.41). In addition, a qualitative comparison among the three technique outputs, rain rate radar maps, and WRF accumulated rainfall maps is also carried out in order to highlight the advantages of the different techniques in providing real-time monitoring, as well as quantitative characterization of rainy areas, especially when rain rate measurements from Weather Radar Network and/or from rain gauges are not available

    Improvement in Surface Solar Irradiance Estimation Using HRV/MSG Data

    No full text
    The Advanced Model for the Estimation of Surface Solar Irradiance (AMESIS) was developed at the Institute of Methodologies for Environmental Analysis of the National Research Council of Italy (IMAA-CNR) to derive surface solar irradiance from SEVIRI radiometer on board the MSG geostationary satellite. The operational version of AMESIS has been running continuously at IMAA-CNR over all of Italy since 2017 in support to the monitoring of photovoltaic plants. The AMESIS operative model provides two different estimations of the surface solar irradiance: one is obtained considering only the low-resolution channels (SSI_VIS), while the other also takes into account the high-resolution HRV channel (SSI_HRV). This paper shows the difference between these two products against simultaneous ground-based observations from a network of 63 pyranometers for different sky conditions (clear, overcast and partially cloudy). Comparable statistical scores have been obtained for both AMESIS products in clear and cloud situation. In terms of bias and correlation coefficient over partially cloudy sky, better performances are found for SSI_HRV (0.34 W/m2 and 0.995, respectively) than SSI_VIS (−33.69 W/m2 and 0.862) at the expense of the greater run-time necessary to process HRV data channel

    Downscaling of Satellite OPEMW Surface Rain Intensity Data

    No full text
    This paper presents a geostatistical downscaling procedure to improve the spatial resolution of precipitation data. The kriging method with external drift has been applied to surface rain intensity (SRI) data obtained through the Operative Precipitation Estimation at Microwave Frequencies (OPEMW), which is an algorithm for rain rate retrieval based on Advanced Microwave Sounding Units (AMSU) and Microwave Humidity Sounder (MHS) observations. SRI data have been downscaled from coarse initial resolution of AMSU-B/MHS radiometers to the fine resolution of Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the Meteosat Second Generation (MSG) satellite. Orographic variables, such as slope, aspect and elevation, are used as auxiliary data in kriging with external drift, together with observations from Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager (MSG-SEVIRI) in the water vapor band (6.2 µm and 7.3 µm) and in thermal-infrared (10.8 µm and 8.7 µm). The validation is performed against measurements from a network of ground-based rain gauges in Southern Italy. It is shown that the approach provides higher accuracy with respect to ordinary kriging, given a choice of auxiliary variables that depends on precipitation type, here classified as convective or stratiform. Mean values of correlation (0.52), bias (0.91 mm/h) and root mean square error (2.38 mm/h) demonstrate an improvement by +13%, −37%, and −8%, respectively, for estimates derived by kriging with external drift with respect to the ordinary kriging
    corecore