715 research outputs found

    Peculiarities of gamma-quanta distribution at 20 TeV energy

    Get PDF
    The angular distribution of protons from the fragmentational region is analyzed. The gamma-quanta families are generated in a dense target by cosmic ray particles at 20 Tev energy. Families were found which had dense groups (spikes) of gamma-quanta where the rapidity/density is 3 times more than the average value determined for all registered families. The experimental data is compared with the results of artificial families simulation

    Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities

    Full text link
    Using Lie group theory and canonical transformations we construct explicit solutions of nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons and discuss other applications of interest to the field of nonlinear matter waves

    Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks

    Full text link
    A comparative study is performed on two heterodyne systems of photon detectors expressed in terms of a signal annihilation operator and an image band creation operator called Shapiro-Wagner and Caves' frame, respectively. This approach is based on the introduction of a convenient operator ψ^\hat \psi which allows a unified formulation of both cases. For the Shapiro-Wagner scheme, where [ψ^,ψ^†]=0[\hat \psi, \hat \psi^{\dag}] =0, quantum phase and amplitude are exactly defined in the context of relative number state (RNS) representation, while a procedure is devised to handle suitably and in a consistent way Caves' framework, characterized by [ψ^,ψ^†]≠0[\hat \psi, \hat \psi^{\dag}] \neq 0, within the approximate simultaneous measurements of noncommuting variables. In such a case RNS phase and amplitude make sense only approximately.Comment: 25 pages. Just very minor editorial cosmetic change

    Nonlinearity Management in Higher Dimensions

    Full text link
    In the present short communication, we revisit nonlinearity management of the time-periodic nonlinear Schrodinger equation and the related averaging procedure. We prove that the averaged nonlinear Schrodinger equation does not support the blow-up of solutions in higher dimensions, independently of the strength in the nonlinearity coefficient variance. This conclusion agrees with earlier works in the case of strong nonlinearity management but contradicts those in the case of weak nonlinearity management. The apparent discrepancy is explained by the divergence of the averaging procedure in the limit of weak nonlinearity management.Comment: 9 pages, 1 figure

    Resonant enhancement of the jump rate in a double-well potential

    Full text link
    We study the overdamped dynamics of a Brownian particle in the double-well potential under the influence of an external periodic (AC) force with zero mean. We obtain a dependence of the jump rate on the frequency of the external force. The dependence shows a maximum at a certain driving frequency. We explain the phenomenon as a switching between different time scales of the system: interwell relaxation time (the mean residence time) and the intrawell relaxation time. Dependence of the resonant peak on the system parameters, namely the amplitude of the driving force A and the noise strength (temperature) D has been explored. We observe that the effect is well pronounced when A/D > 1 and if A/D 1 the enhancement of the jump rate can be of the order of magnitude with respect to the Kramers rate.Comment: Published in J. Phys. A: Math. Gen. 37 (2004) 6043-6051; 6 figure

    Fast atomic transport without vibrational heating

    Get PDF
    We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The atom is driven non-adiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies and accelerations involved are analyzed, as well as the relation to previous approaches (based on classical trajectories or "fast-forward" and "bang-bang" methods) which can be integrated in the invariant-based framework.Comment: 10 pages, 5 figure

    Generalizing the autonomous Kepler Ermakov system in a Riemannian space

    Full text link
    We generalize the two dimensional autonomous Hamiltonian Kepler Ermakov dynamical system to three dimensions using the sl(2,R) invariance of Noether symmetries and determine all three dimensional autonomous Hamiltonian Kepler Ermakov dynamical systems which are Liouville integrable via Noether symmetries. Subsequently we generalize the autonomous Kepler Ermakov system in a Riemannian space which admits a gradient homothetic vector by the requirements (a) that it admits a first integral (the Riemannian Ermakov invariant) and (b) it has sl(2,R) invariance. We consider both the non-Hamiltonian and the Hamiltonian systems. In each case we compute the Riemannian Ermakov invariant and the equations defining the dynamical system. We apply the results in General Relativity and determine the autonomous Hamiltonian Riemannian Kepler Ermakov system in the spatially flat Friedman Robertson Walker spacetime. We consider a locally rotational symmetric (LRS) spacetime of class A and discuss two cosmological models. The first cosmological model consists of a scalar field with exponential potential and a perfect fluid with a stiff equation of state. The second cosmological model is the f(R) modified gravity model of {\Lambda}_{bc}CDM. It is shown that in both applications the gravitational field equations reduce to those of the generalized autonomous Riemannian Kepler Ermakov dynamical system which is Liouville integrable via Noether integrals.Comment: Reference [25] update, 21 page

    Schemes of implementation in NMR of quantum processors and Deutsch-Jozsa algorithm by using virtual spin representation

    Full text link
    Schemes of experimental realization of the main two qubit processors for quantum computers and Deutsch-Jozsa algorithm are derived in virtual spin representation. The results are applicable for every four quantum states allowing the required properties for quantum processor implementation if for qubit encoding virtual spin representation is used. Four dimensional Hilbert space of nuclear spin 3/2 is considered in details for this aimComment: 15 pages, 3 figure

    Unitary relations in time-dependent harmonic oscillators

    Get PDF
    For a harmonic oscillator with time-dependent (positive) mass and frequency, an unitary operator is shown to transform the quantum states of the system to those of a harmonic oscillator system of unit mass and time-dependent frequency, as well as operators. For a driven harmonic oscillator, it is also shown that, there are unitary transformations which give the driven system from the system of same mass and frequency without driving force. The transformation for a driven oscillator depends on the solution of classical equation of motion of the driven system. These transformations, thus, give a simple way of finding exact wave functions of a driven harmonic oscillator system, provided the quantum states of the corresponding system of unit mass are given.Comment: Submitted to J. Phys.
    • 

    corecore