For a harmonic oscillator with time-dependent (positive) mass and frequency,
an unitary operator is shown to transform the quantum states of the system to
those of a harmonic oscillator system of unit mass and time-dependent
frequency, as well as operators. For a driven harmonic oscillator, it is also
shown that, there are unitary transformations which give the driven system from
the system of same mass and frequency without driving force. The transformation
for a driven oscillator depends on the solution of classical equation of motion
of the driven system. These transformations, thus, give a simple way of finding
exact wave functions of a driven harmonic oscillator system, provided the
quantum states of the corresponding system of unit mass are given.Comment: Submitted to J. Phys.