52 research outputs found

    Rab3D is critical for secretory granule maturation in PC12 cells.

    Get PDF
    Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs

    Trans-Translation in Helicobacter pylori: Essentiality of Ribosome Rescue and Requirement of Protein Tagging for Stress Resistance and Competence

    Get PDF
    BACKGROUND: The ubiquitous bacterial trans-translation is one of the most studied quality control mechanisms. Trans-translation requires two specific factors, a small RNA SsrA (tmRNA) and a protein co-factor SmpB, to promote the release of ribosomes stalled on defective mRNAs and to add a specific tag sequence to aberrant polypeptides to direct them to degradation pathways. Helicobacter pylori is a pathogen persistently colonizing a hostile niche, the stomach of humans. PRINCIPAL FINDINGS: We investigated the role of trans-translation in this bacterium well fitted to resist stressful conditions and found that both smpB and ssrA were essential genes. Five mutant versions of ssrA were generated in H. pylori in order to investigate the function of trans-translation in this organism. Mutation of the resume codon that allows the switch of template of the ribosome required for its release was essential in vivo, however a mutant in which this codon was followed by stop codons interrupting the tag sequence was viable. Therefore one round of translation is sufficient to promote the rescue of stalled ribosomes. A mutant expressing a truncated SsrA tag was viable in H. pylori, but affected in competence and tolerance to both oxidative and antibiotic stresses. This demonstrates that control of protein degradation through trans-translation is by itself central in the management of stress conditions and of competence and supports a regulatory role of trans-translation-dependent protein tagging. In addition, the expression of smpB and ssrA was found to be induced upon acid exposure of H. pylori. CONCLUSIONS: We conclude to a central role of trans-translation in H. pylori both for ribosome rescue possibly due to more severe stalling and for protein degradation to recover from stress conditions frequently encountered in the gastric environment. Finally, the essential trans-translation machinery of H. pylori is an excellent specific target for the development of novel antibiotics

    Roles of Myosin Va and Rab3D in Membrane Remodeling of Immature Secretory Granules

    Get PDF
    Neuroendocrine secretory granules (SGs) are formed at the trans-Golgi network (TGN) as immature intermediates. In PC12 cells, these immature SGs (ISGs) are transported within seconds to the cell cortex, where they move along actin filaments and complete maturation. This maturation process comprises acidification-dependent processing of cargo proteins, condensation of the SG matrix, and removal of membrane and proteins not destined to mature SGs (MSGs) into ISG-derived vesicles (IDVs). We investigated the roles of myosin Va and Rab3 isoforms in the maturation of ISGs in neuroendocrine PC12 cells. The expression of dominant-negative mutants of myosin Va or Rab3D blocked the removal of the endoprotease furin from ISGs. Furthermore, expression of mutant Rab3D, but not of mutant myosin Va, impaired cargo processing of SGs. In conclusion, our data suggest an implication of myosin Va and Rab3D in the maturation of SGs where they participate in overlapping but not identical tasks

    Helicobacter pylori versus the Host: Remodeling of the Bacterial Outer Membrane Is Required for Survival in the Gastric Mucosa

    Get PDF
    Modification of bacterial surface structures, such as the lipid A portion of lipopolysaccharide (LPS), is used by many pathogenic bacteria to help evade the host innate immune response. Helicobacter pylori, a gram-negative bacterium capable of chronic colonization of the human stomach, modifies its lipid A by removal of phosphate groups from the 1- and 4′-positions of the lipid A backbone. In this study, we identify the enzyme responsible for dephosphorylation of the lipid A 4′-phosphate group in H. pylori, Jhp1487 (LpxF). To ascertain the role these modifications play in the pathogenesis of H. pylori, we created mutants in lpxE (1-phosphatase), lpxF (4′-phosphatase) and a double lpxE/F mutant. Analysis of lipid A isolated from lpxE and lpxF mutants revealed lipid A species with a 1 or 4′-phosphate group, respectively while the double lpxE/F mutant revealed a bis-phosphorylated lipid A. Mutants lacking lpxE, lpxF, or lpxE/F show a 16, 360 and 1020 fold increase in sensitivity to the cationic antimicrobial peptide polymyxin B, respectively. Moreover, a similar loss of resistance is seen against a variety of CAMPs found in the human body including LL37, β-defensin 2, and P-113. Using a fluorescent derivative of polymyxin we demonstrate that, unlike wild type bacteria, polymyxin readily associates with the lpxE/F mutant. Presumably, the increase in the negative charge of H. pylori LPS allows for binding of the peptide to the bacterial surface. Interestingly, the action of LpxE and LpxF was shown to decrease recognition of Helicobacter LPS by the innate immune receptor, Toll-like Receptor 4. Furthermore, lpxE/F mutants were unable to colonize the gastric mucosa of C57BL/6J and C57BL/6J tlr4 -/- mice when compared to wild type H. pylori. Our results demonstrate that dephosphorylation of the lipid A domain of H. pylori LPS by LpxE and LpxF is key to its ability to colonize a mammalian host

    Intrapulmonary Heterotopic Pancreas Presenting as Lung Abscess

    No full text

    Targeting of whole killed bacteria to gastrointestinal M-cells induces humoral immunity in the female reproductive tract

    No full text
    Recently, we demonstrated that oral delivery of whole killed bacteria, when agglutinated by an M-cell targeting lectin, resulted in an enhanced systemic and mucosal antibody response, as well as a protective immunity, against the gut pathogens Helicobacter pylori and Campylobacter jejuni. Importantly, this protection was achieved without the addition of exogenous adjuvant. Here, in this addendum, we extend this initial study by reporting on the vaginal antibody response induced by these vaccinations. These data show that the targeting of M-cells within the gastrointestinal tract also induces the secretion of antigen-specific antibodies (IgG and IgA) at a distal mucosal site, namely the vaginal mucosa. This observation raises the possibility that oral delivery of a whole, killed bacteria vaccine that target intestinal M-cells could potentially provide a strategy for inducing protective immunity against pathogenic bacteria that infect mucosal sites outside the gastrointestinal tract

    Population dynamics of CD4+ T cells lacking Thy-1 in murine retrovirus-induced immunodeficiency syndrome (MAIDS).

    Full text link
    Increased numbers of CD4+ Thy-1- cells have been described in the spleen (SP) of mice with retrovirus-induced immunodeficiency (MAIDS). Since this phenotypic abnormality might have considerable functional importance, the expansion of the CD4+ Thy-1- subset in MAIDS was characterized further. CD4+ Thy-1- and Thy-1+ T-cells from infected mice expressed similar densities of CD3 and TCR alpha/beta. In contrast, the Thy-1- subset was uniformly CD44hi, even early in the disease when part of Thy-1+ cells were still CD44lo. The emergence of CD4+ Thy-1- cells occurred first in SP and lymph nodes and was observed later in thymus. The important fraction of CD4+ cells lacking Thy-1 normally present in Peyer's patches was only weakly modified. Despite the major expansion of the CD4+ Thy-1- phenotype, the proliferating fraction was not higher in this subset than in CD4+ Thy-1+ cells from infected mice. Persistence after hydroxyurea administration was identical in both subsets, indicating similar mean cell lifespans. Taken together, these results show that the major expansion of CD4+ Thy-1- T-cells in MAIDS is not ascribable solely to increased proliferation within this subset. Phenotypic analysis suggests that CD4+ Thy-1- cells result from the differentiation of Thy-1+ cells induced by activation signals related to retroviral infection
    corecore