1,105 research outputs found
Tests of Universality of Baryon Form Factors in Holographic QCD
We describe a new exact relation for large QCD for the long-distance
behavior of baryon form factors in the chiral limit, satisfied by all 4D
semi-classical chiral soliton models. We use this relation to test the
consistency of the structure of two different holographic models of baryons.Comment: 4 pages. Talk presented by MN at Light Cone 2009: Relativistic
Hadronic and Particle Physics, 8-13 Jul 2009, Sao Jose dos Campos, Brazi
On the Evaluation of Gluon Condensate Effects in the Holographic Approach to QCD
In holographic QCD the effects of gluonic condensate can be encoded in a
suitable deformation of the 5D metric. We develop two different methods for the
evaluation of first order perturbative corrections to masses and decay
constants of vector resonances in 5D Hard-Wall models of QCD due to small
deformations of the metric. They are extracted either from a novel compact form
for the first order correction to the vector two-point function, or from
perturbation theory for vector bound-state eigenfunctions: the equivalence of
the two methods is shown. Our procedures are then applied to flat and to AdS 5D
Hard-Wall models; we complement results of existing literature evaluating the
corrections to vector decay constant and to two-pion-one-vector couplings: this
is particularly relevant to satisfy the sum rules. We concentrate our attention
on the effects for the Gasser-Leutwyler coefficients; we show that, as in the
Chiral Quark model, the addition of the gluonic condensate improves the
consistency, the understanding and the agreement with phenomenology of the
holographic model.Comment: 23 pages, three figures, sign error in pion wave function fixed,
numerical analysis extended, general conclusions unchange
Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity
Macrophages resident in different organs express distinct genes, but understanding how this diversity fits into tissue-specific features is limited. Here, we show that selective expression of coagulation factor V (FV) by resident peritoneal macrophages in mice promotes bacterial clearance in the peritoneal cavity and serves to facilitate the well-known but poorly understood macrophage disappearance reaction. Intravital imaging revealed that resident macrophages were nonadherent in peritoneal fluid during homeostasis. Bacterial entry into the peritoneum acutely induced macrophage adherence and associated bacterial phagocytosis. However, optimal control of bacterial expansion in the peritoneum also required expression of FV by the macrophages to form local clots that effectively brought macrophages and bacteria in proximity and out of the fluid phase. Thus, acute cellular adhesion and resident macrophage-induced coagulation operate independently and cooperatively to meet the challenges of a unique, open tissue environment. These events collectively account for the macrophage disappearance reaction in the peritoneal cavity
Little Technicolor
Inspired by the AdS/CFT correspondence, we show that any G/H symmetry
breaking pattern can be described by a simple two-site moose diagram. This
construction trivially reproduces the CCWZ prescription in the context of
Hidden Local Symmetry. We interpret this moose in a novel way to show that many
little Higgs theories can emerge from ordinary chiral symmetry breaking in
scaled-up QCD. We apply this reasoning to the simple group little Higgs to see
that the same low energy degrees of freedom can arise from a variety of UV
complete theories. We also show how models of holographic composite Higgs
bosons can turn into brane-localized little technicolor theories by
"integrating in" the IR brane.Comment: 26 pages, 2 figures; v2: references added; v3: added section on
vacuum alignment to match JHEP versio
Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping
Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al
Self-bound dense objects in holographic QCD
We study a self-bound dense object in the hard wall model. We consider a
spherically symmetric dense object which is characterized by its radial density
distribution and non-uniform but spherically symmetric chiral condensate. For
this we analytically solve the partial differential equations in the hard wall
model and read off the radial coordinate dependence of the density and chiral
condensate according to the AdS/CFT correspondence. We then attempt to describe
nucleon density profiles of a few nuclei within our framework and observe that
the confinement scale changes from a free nucleon to a nucleus. We briefly
discuss how to include the effect of higher dimensional operator into our
study. We finally comment on possible extensions of our work.Comment: 17 pages, 5 figures, figures replaced, minor revision, to appear in
JHE
Couplings of the Rho Meson in a Holographic dual of QCD with Regge Trajectories
The couplings of the meson with any hadron H are
calculated in a holographic dual of QCD where the Regge trajectories for mesons
are manifest. The resulting couplings grow linearly with the exciting number of
H, thus are far from universal. A simple argument has been given for this
behavior based on quasi-classical picture of excited hadrons. It seems that in
holographic duals with exact Regge trajectories the universality
should be violated. The -dominance for the electromagnetic form factors
of H are also strongly violated, except for the lowest state, the pion. Quite
unexpected, the form factor of the pion is completely saturated by the
contribution of the . The asymptotic behavior of the form factors are
also calculated, and are found to be perfectly accordant with the prediction of
conformal symmetry and pertubative QCD.Comment: 9 page
Conformal Symmetry and the Three Point Function for the Gravitational Axial Anomaly
This work presents a first study of a radiative calculation for the
gravitational axial anomaly in the massless Abelian Higgs model. The two loop
contribution to the anomalous correlation function of one axial current and two
energy-momentum tensors, , is computed
at an order that involves only internal matter fields. Conformal properties of
massless field theories are used in order to perform the Feynman diagram
calculations in the coordinate space representation. The two loop contribution
is found not to vanish, due to the presence of two independent tensor
structures in the anomalous correlator.Comment: 34 pages, 5 figures, RevTex, Minor changes, Final version for Phys.
Rev.
- âŠ