145 research outputs found

    Self-bound dense objects in holographic QCD

    Full text link
    We study a self-bound dense object in the hard wall model. We consider a spherically symmetric dense object which is characterized by its radial density distribution and non-uniform but spherically symmetric chiral condensate. For this we analytically solve the partial differential equations in the hard wall model and read off the radial coordinate dependence of the density and chiral condensate according to the AdS/CFT correspondence. We then attempt to describe nucleon density profiles of a few nuclei within our framework and observe that the confinement scale changes from a free nucleon to a nucleus. We briefly discuss how to include the effect of higher dimensional operator into our study. We finally comment on possible extensions of our work.Comment: 17 pages, 5 figures, figures replaced, minor revision, to appear in JHE

    Effective AdS/renormalized CFT

    Full text link
    For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a double-trace deformation and spontaneously broken CFT. For the second dual pair, we compute scaling corrections at the UV and IR fixed points of the RG flow triggered by the double-trace deformation. For the last case, we discuss whether our prescription is sensitive to the AdS interior or equivalently, the IR physics of the dual field theory.Comment: 20 pages, 3 figure

    Virtual Compton Scattering off a Spinless Target in AdS/QCD

    Get PDF
    We study the doubly virtual Compton scattering off a spinless target γ∗P→γ∗Pâ€Č\gamma^*P\to\gamma^*P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.Comment: 21 pages, version to be published in JHEP

    Symmetry energy of dense matter in holographic QCD

    Full text link
    We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small densities, it exhibits a power law behavior with the density, Esym∌ρ1/2E_{\rm sym} \sim \rho^{1/2}.Comment: 9 pages, 3 figure

    Scalar and vector mesons of flavor chiral symmetry breaking in the Klebanov-Strassler background

    Full text link
    Recently, Dymarsky, Kuperstein and Sonnenschein constructed an embedding of flavor D7- and anti-D7-branes in the Klebanov-Strassler geometry that breaks the supersymmetry of the background, yet is stable. In this article, we study in detail the spectrum of vector mesons in this new model of flavor chiral symmetry breaking and commence an analytical analysis of the scalar mesons in this setup.Comment: v1: 35 pages, 5 figures, 4 tables, includes self-contained review of DKS construction; v2: corrected signs in eqs. (2.22) and (2.23), improved discussion of scalar mesons in section 3.2; v3: major revision of the results on scalar mesons, version submitted to JHEP; v4: version accepted by JHE

    Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT

    Full text link
    We use AdS/CFT correspondence to study two-particle correlations in heavy ion collisions at strong coupling. Modeling the colliding heavy ions by shock waves on the gravity side, we observe that at early times after the collision there are long-range rapidity correlations present in the two-point functions for the glueball and the energy-momentum tensor operators. We estimate rapidity correlations at later times by assuming that the evolution of the system is governed by ideal Bjorken hydrodynamics, and find that glueball correlations in this state are suppressed at large rapidity intervals, suggesting that late-time medium dynamics can not "wash out" the long-range rapidity correlations that were formed at early times. These results may provide an insight on the nature of the "ridge" correlations observed in heavy ion collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde

    Soft wall model for a holographic superconductor

    Get PDF
    We apply the soft wall holographic model from hadron physics to a description of the high-TcT_c superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological. On the other hand, it is much simpler and has more freedom for fitting the conductivity properties of the real high-TcT_c materials. We demonstrate some examples of emerging models and discuss a possible origin of the approach.Comment: 17 pages, 16 figure

    Linear Confinement for Mesons and Nucleons in AdS/QCD

    Full text link
    By using a new parametrization of the dilaton field and including a cubic term in the bulk scalar potential, we realize linear confinement in both meson and nucleon sectors within the framework of soft-wall AdS/QCD. At the same time this model also correctly incorporate chiral symmetry breaking. We compare our resulting mass spectra with experimental data and find good agreement between them.Comment: 14 pages, published version in JHE

    Completing the framework of AdS/QCD: h_1/b_1 mesons and excited omega/rho's

    Full text link
    We extend the "hard wall" gravity dual of QCD by including tensor fields b_{MN} that correspond to the QCD quark bilinear operators qbar sigma^{mu nu} q. These fields give rise to a spectrum of states which include the h_1 and b_1 mesons, as well as a tower of excited omega/rho meson states. We also identify the lowest-dimension term which leads to mixing between the new rho states and the usual tower of rho mesons when chiral symmetry is broken.Comment: 37 pages, uses jheppub.sty; v2: Added reference and revised discussion of interaction term
    • 

    corecore