38 research outputs found

    Pharmacologic Inhibition of the TGF-β Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone

    Get PDF
    During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-β has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-β signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-β signaling on bone remain unclear. To examine the role of TGF-β in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-β type I receptor (TβRI) kinase on bone mass, architecture and material properties. Inhibition of TβRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TβRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TβRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TβRI inhibitors may be effective in treating conditions of skeletal fragility

    Atomic-Scale Surface Roughness of Rutile and Implications for Organic Molecule Adsorption.

    No full text
    Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nm- to μm-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations and amino acids. The data suggest that one third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide under-coordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nm- to μm-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile

    The role of the immune system beyond the fight against infection

    Get PDF
    The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system’s overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields. This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discusse
    corecore