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Chapter 1: The role of the immune system beyond the fight against infection 
 

Abstract 
The immune system was identified as a protective factor during infectious diseases 

over a century ago. Current definitions and text book information are still largely 

influenced by these early observations and the immune system is commonly 

presented as a defence machinery. However, host defence is only one manifestation 

of the immune system’s overall function in the maintenance of tissue homeostasis 

and system integrity. In fact, the immune system is integral part of fundamental 

physiological processes such as development, reproduction and wound healing, and 

a close crosstalk between the immune system and other body systems such as 

metabolism, the central nervous system and the cardiovascular system are evident. 

Research and medical professionals in an expanding range of areas start to 

recognise the implications of the immune system in their respective fields.  

This chapter provides a brief historical perspective on how our understanding of the 

immune system has evolved from a defence system to an overarching surveillance 

machinery that strives to maintain tissue integrity. Current perspectives on the non-

defence functions of classical immune cells and factors will also be discussed. 

 

Introduction - Our changing understanding of the immune system: 
Our current understanding of the immune system varies drastically from the view that 

prevailed just over 20 years ago. Early observations during infectious diseases lead 

to a major focus on the immune system’s ability to discriminate between self and 

non-self and defence against pathogenic micro-organisms. In its classical definition, 

the immune system comprises of humoral factors such as complement proteins, as 

well as immune cells and their products including antibodies, cytokines/chemokines 

and growth factors. This system of humoral and cellular factors is considered 

responsible for defending the host from invading pathogenic micro-organisms.  

However, the effects of immune cells and factors are not limited to host defence, but 

extend to development, tissue homeostasis and repair (Figure 1). In addition, there 

are crucial immunological functions played by stromal and mesenchymal cells, which 

are not commonly considered part of the immune system, such as fibroblasts and 

endothelial cells. On top of that, it is now also appreciated that the inflammatory 

status of the environment is important in defining the type of response to any antigen 



Cardiovascular	Immunology	 	 Sattler,	AEMB	2017	

	 2	

and that the immune system is in fact crucial for the maintenance and restoration of 

tissue homeostasis in both sterile and infectious situations. 

 

A brief historical perspective: 
What is believed to be the first record of an immunological observation dates from 

430 BC. During a plague outbreak in Athens, the Greek historian and general 

Thucydudes, noted that people that were lucky enough to recover from the plague, 

did not catch the disease for a second time (1). The beginnings of modern day 

immunology are usually attributed to Louis Pasteur and Robert Koch. Pasteur, in 

contrast to common believe at the time, suggested that disease was caused by 

germs (2) and Robert Koch confirmed this concept in 1891 with his postulates and 

proofs, for which he received The Nobel Prize in Physiology or Medicine in 1905 (3, 

4). These very early observations were fundamental for the first identification and 

early characterisation of the immune system, but also skewed all subsequent 

definitions towards a defence machinery against invading micro-organisms.  

 

The traditional view of immunity: evolution to protect from infectious micro-

organisms. 

The immune system has long been considered to have evolved primarily because it 

provided host protection from infectious micro-organisms and correspondingly a 

survival advantage. Genes of the immune system have been suggested to be under 

particularly high evolutionary pressure due to the need to prevent pathogenic micro-

organisms from harming the host. Hosts are therefore under selective pressure to 

resist pathogens, whereas pathogens are selected to overcome increasing host 

defences (5). This process of a stepwise increase in resistance by the host and 

subsequent mechanisms for evasion by the pathogen, is the basis for a well 

established co-evolutionary dynamics, the ‘host–pathogen arms race’ (6).  

In 1989, Charles Janeway proposed his ‘pattern recognition theory’ (7), which still 

provides the conceptual framework for our current understanding of innate immune 

recognition and its role in the activation of adaptive immunity. Janeway proposed the 

existence of an evolutionary conserved first line of defence consisting of antigen-

presenting cells equipped with pattern recognition receptors (PRR) which recognize 

common patterns found on micro-organisms, which are different and thus 

distinguishable from those of host cells. These innate cells take up foreign antigen, 
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present them to adaptive immune cells and thus determine the following adaptive 

immune response. Janeway's model also suggested, that the innate immune system 

evolved to discriminate infectious non-self from non-infectious self as microbial 

patterns were not present on host tissues (8). A few years later, the first family of 

pattern recognition receptors, the Toll-like receptors (TLRs) were indeed discovered 

(9). Notably, Toll-like receptors (TLRs) are also one of several striking examples of 

convergent evolution in the immune system (10). TLRs are used for innate immune 

recognition in both insects and vertebrates. The ancient common ancestor, a 

receptor gene with function during developmental patterning, subsequently evolved a 

secondary function in host defence, independently in insects and vertebrates, after 

the vertebrate and invertebrate lineage had separated (11).  

All this seemed to strongly support the concept that the primary role of the immune 

system is to defend against potentially infectious micro-organisms. 

 

The danger view of immunity: evolution to protect from endogenous danger. 

Charles Janeway's model is still considered largely correct today, although too 

simplistic as it fails to explain certain aspects of immunity including sterile immune 

responses in the absence of infectious agents as well as the unresponsiveness to a 

variety of non-self stimuli such as dietary antigens and commensal microorganisms. 

In 1994, Polly Matzinger proposed the ‘Danger Hypothesis’ (12). Her model, again 

on purely theoretical grounds, suggested that the primary driving force of the 

immune system is the need to detect and protect against danger as equivalent to 

tissue injury. Importantly, in the same year, a group of scientists working on kidney 

transplantation, discussed the possibility that in addition to its foreignness, it was the 

injury to an allograft, which ultimately caused an immune response and rejection 

(13). Activation of innate immune events by injury-induced exposure of normally 

hidden endogenous molecules has since been demonstrated countless times (14, 

15). Examples for such endogenous molecules include nucleic acids (16), heat 

shock proteins (17), cytoskeletal proteins (18), HMBG-1 (19), SAP130 (20), IL-33 

(21) and IL-1a (22). In addition to proteins that are normally hidden from detection by 

the immune system, there are small molecules released as a result of endogenous 

stress including high glucose (23), cholesterol (24) and ATP (25). All these agents 

have been shown to contribute to sterile inflammatory responses and have been 

termed damage-associated molecular patterns (DAMPs).  
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Thus, an inflammatory environment caused by tissue injury (danger hypothesis) 

alerts the immune system and is the prerequisite to an adaptive immune response 

against foreign antigens (self versus non-self pattern recognition hypothesis).  

 

The integrative view of immunity: evolution as a system to establish and maintain 

tissue homeostasis. 

Considering the crucial importance of the innate immune response to tissue injury to 

initiate tissue repair processes and mount an effective adaptive response, the 

question arises if the early evolution of the immune system may have been driven by 

the need to maintain tissue homeostasis and the ability to deal with tissue injury 

rather than infection. Strikingly, the Russian developmental zoologist Ilya Metchnikoff 

discovered phagocytosis in echinoderms at the end of the 19th century and 

proposed the phagocyte and innate immunity as the center of the immune response. 

Metchnikoff's already developed a concept of immunity as a summary of all those 

activities that defined organismal identity, and which regarded host defence 

mechanisms as only subordinate to this primary function (26). The evolutionary 

development of the process of phagocytosis provides a very strong argument for the 

immune system being more than just a defence mechanisms. Evolutionary old 

organisms, such as ameba, already use this ancient mechanisms, albeit mainly for 

feeding (27, 28). In multicellular organisms, phagocytosis is first used during 

embryogenesis for the removal of dying cells and the recycling of their molecules. In 

adults, phagocytosis continues to play a crucial role during tissue remodeling (29, 

30). Only the evolutionary appearance of the major histocompatibility complex 

(MHC) locus in jawed fish seems to have allowed the phagosomes to play a role in 

the establishment of adaptive immunity (31). 

Decades of research using ever more sophisticated technologies allow the 

conclusion that defence against ‘non-self’ is only one of many layers of how the 

immune system protects us from disease. This is most evident in the evolutionary 

ancient mechanism of phagocytosis, which is still the most fundamental basis for 

tissue development, homeostasis and repair.  

 

Functions of immune cells beyond host defence:  
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In this section, examples of non-defence functions of classical immune cells during 

reproduction, embryonic development, angiogenesis, and post-injury repair and 

regeneration will be discussed.  
 

Reproduction: The immune system plays a crucial role in reproduction both before 

and during pregnancy and leucocytes are found in male and female reproductive 

tissues (32-34).  

Several classical inflammatory mediators participate in the process of ovulation. 

Granulocytes, macrophages and T-lymphocytes migrate to the ovulation site and are 

activated locally, suggesting an active role of leukocytes in the tissue remodelling 

which occurs during ovulation (35).  

Mice deficient of the major macrophage growth factor, colony-stimulating factor-1 

(CSF-1) show severe fertility defects, as CSF-1 is involved in maternal-fetal 

interactions during pregnancy and has a crucial role in the development of the 

mammary gland (36-39). Eotaxin, a major chemokine for local recruitment of 

eosinophils into tissue, also contributes to mammary gland development (40, 41). 

Establishment and maintenance of feto-maternal tolerance during pregnancy has 

intrigued immunologists for a long time, and to date a set of anatomical, cellular and 

molecular regulatory mechanisms that protect the fetus from immune-mediated 

rejection has been uncovered (42). The maternal-fetal interface is an 

immunologically highly dynamic site rich in cytokines and hormones (43, 44). During 

the first few weeks after fertilization, interstitial and endovascular infiltration of 

trophoblast cells leads to the recruitment of maternal immune cells and the 

production of pro-inflammatory cytokines (45). Maternal immune responses have 

been proposed to protect from trophoblast over-invasion while allowing for the 

acceptance of the semi-allogeneic fetal-placental unit. 40% of cells in the decidua 

during the first trimester are CD45+ leukocytes. 50-60% of decidual leukocytes are a 

unique type of natural killer (NK) cells which is not present outside the context of 

pregnancy and has crucial trophic function by helping to remodel the spiral arterioles 

of the uterus that supply the placenta with blood (46). Failure to sufficiently remodel 

these vessels leads to inadequate placental perfusion, which in turn leads to 

intrauterine growth restriction and pre-eclampsia, two important obstetrical 

complications (47). The remaining leukocytic infiltrate are roughly 10% T-

lymphocytes, 1-2% dendritic cells (DCs), and 20-25% decidual macrophages (48). 
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The decidual macrophage population are subdivided into a CD11c high and CD11c 

low population, which are responsible for antigen processing and presentation. 

Depending on the macrophage subset, antigen presentation leads to either an 

induction of maternal immune cell tolerance to fetal antigens (CD11c high) or 

homeostatic functions including the clearance of apoptotic cells during placental 

construction (CD11c low) (49, 50). Thus, besides being a potential threat to the 

developing fetus due to allorecognition of fetal antigens, decidual leukocytes play a 

crucial role in the development of the fetal-placental unit (51). 

 

Development: Macrophages both initiate and respond to developmental apoptosis 

(52, 53). Notably however, and a major sign of the fundamental role of the 

phagocytic process, non-immune cells are able to take over phagocytosis if 

necessary. In mice lacking macrophages due to a deficiency for the haemopoetic-

lineage-specific transcription factor PU.1, the task of developmental phagocytosis is 

taken over by mesenchymal cells, although they are significantly less efficient than 

professional macrophages in recognition, engulfment and degradation of apoptotic 

debris (54). Comparable roles of macrophages in developmental apoptosis have 

been reported in evolutionary older vertebrate species and insects. In the frog 

Xenopus laevis, macrophage phagocytosis is involved in programmed cell death of 

tail and body muscle during metamorphosis (55). In the Drosophila embryo, the 

development of the tracheal system is created by a system of cell migration, 

rearrangements, and elimination of cells, which are engulfed and removed by 

macrophages (56).  

Bone development: Bone osteoclasts are multinucleated cells that resorb bone 

material during development and form by fusion of mononuclear precursors of the 

monocyte/macrophage lineage. CSF-1 is an important factor involved in osteoclast 

differentiation (57). The toothless (tl) mutation in the rat is a naturally occurring, 

autosomal recessive mutation in the Csf1 gene and causes severely reduced 

numbers of macrophages and a profound deficiency of bone-resorbing osteoclasts 

and peritoneal macrophages. This results in severe osteopetrosis, with a highly 

sclerotic skeleton, lack of marrow spaces and failure of tooth eruption (58). 

Administration of CSF-1 can correct these defects demonstrating the crucial 

importance of macrophages in bone development (59). 
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Brain development: Brain microglia are highly motile phagocytic cells that infiltrate 

and take up residence in the developing brain, where they are thought to provide 

surveillance and scavenging function (60). They assist during embryonic 

development by mediating induced cell death of neurons (61). Both CSF-1 and its 

receptor are expressed in developing mouse brain, and CSF-1 deficiency induces 

neurological abnormalities (62). During postnatal brain development, microglia 

actively engulf synaptic material and play a major role in synaptic pruning (63). They 

can remove entire dendritic structures after depletion of appropriate inputs, a 

process termed synaptic stripping. They accumulate, through signaling mediated by 

the chemokine receptor CXCR3, at the lesion site and dendritic structures are 

removed within a few days (64, 65).. Microglia cells may also be a source of other 

brain cells, as isolated microglia cells in culture have the potential to generate 

neurons, astrocytes and oligodendrocytes (66, 67).  
Microglia also release factors that influence adult neurogenesis and glial 

development (68, 69). They secrete neurotrophins of the nerve growth factor (NGF) 

family, suggesting that they promote development and normal function of neurons 

and glia (70) and have autocrine function on microglial proliferation and phagocytic 

activity in vitro (71) 
 

Angiogenesis: The formation of blood vessels is essential for tissue development 

and tissue homeostasis in all vertebrates. Monocytes and macrophages are known 

to be involved in the formation of new blood vessels and are involved in all phases of 

the angiogenic process. They are capable of secreting a vast repertoire of 

angiogenic effector molecules, including matrix-remodelling proteases, pro-

angiogenic growth factors (VEGF/VPF, bFGF, GM-CSF, TGF-alpha, IGF-I, PDGF, 

TGF-beta), and cytokines (IL-1, IL-6, IL-8, TNF-alpha, substance P, prostaglandins, 

interferons, thrombospondin 1) (72). The expansion of the blood vessel network 

during angiogenesis starts with sprouting and is followed by anastomosis. Vessel 

sprouting is induced by a chemotactic gradient of the vascular endothelial growth 

factor (VEGF), which stimulates tip cell protrusion to initiate vessel growth (73). 

Macrophages are crucial for the fusion of tip cells to add new circuits to the existing 

vessel network by physically bridging and guiding neighboring tip cells until they are 

fused (74).  
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Tissue homeostasis, regeneration and repair: The immune system is crucial in 

wound healing and regeneration after tissue damage. There is a wealth of 

information available about the involvement of immune cells in the repair of all major 

organs including the skin (75, 76), skeletal muscle and heart (77-82), kidney (83, 84), 

liver (85), brain (86, 87) and the gut (88). If damage to blood vessels is involved, the 

activated coagulation system initiates the first stages of healing with the release of 

chemical mediators that promote vascular permeability and leukocyte adhesion and 

recruitment. Coagulation activates platelets which produce growth factors such as 

transforming growth factor-β (TGFβ) and platelet-derived growth factor (PDGF), 

which activate fibroblasts and act as chemoattractants for leukocytes (89). However, 

even without activation of the coagulation cascade, alarmins released from necrotic 

cells recruit leucocytes. Infiltrating neutrophils and macrophages remove dead cells 

and secrete chemokines and cytokines, including tumour necrosis factor (TNF) and 

interleukin-1 (IL-1), which further upregulate leukocyte adhesion molecules to 

increase immune cell recruitment and induce the production of additional growth 

factors and proteases such as matrix metalloproteases. Matrix metalloproteases 

degrade the extracellular matrix which allow for tissue remodelling. fibroblast growth 

factor (FGF), PDGF, prostaglandins and thrombospondin-1, promote new blood 

vessel growth, fibroblast proliferation and collagen deposition. Tissue remodelling is 

accompanied by parenchymal regeneration or regrowth of the epithelial cell layer 

with resolution of the healing process (90). 

Recently, several innate-type lymphoid cell (iLC) subsets have been identified and 

characterized, that seem to play a particularly important role in sterile inflammatory 

settings. These novel cell types include lymphoid tissue-inducer cells, innate type 2 

helper cells, and γδ T-lymphocytes (91). These cells rapidly express effector 

cytokines that are commonly associated with adaptive T helper cell responses such 

as IL-17, IL-13, IL-4 and IL-22 (92, 93). Their role in wound healing and regeneration 

is strongly mediated by the cytokines they produce. LTi cells play a central role in 

promoting appropriate thymic regeneration in sterile inflammatory settings, an effect 

which is mediated largely through the cytokine IL-22 which promotes epithelial repair 

and tissue regeneration (94). Further, the endogenous alarmin IL-33 has profound 

effects on innate type 2 helper cells and thereby plays a central role in driving type 2 

immunity under sterile and infectious settings (95, 96). Tissue repair processes 

following injury are dominated by type 2 immune cells producing cytokines such as 



Cardiovascular	Immunology	 	 Sattler,	AEMB	2017	

	 9	

IL-4, IL-5, IL-10, and IL-13. Many Th2 processes promote the “walling off” of large 

invaders through granuloma formation and matrix deposition, which are the same 

mechanisms employed to close open wounds (97). Shifting the inflammatory 

response towards a type 2 response is beneficial for quick wound healing, which 

likely was the evolutionary most cost-effective approach to deal with large parasites 

or insect bites, although this may come at the cost of fibrotic repair and long-term 

loss of tissue functionality (80, 98). Intense research efforts in the field of 

regenerative medicine are trying to find the right balance between pro-inflammatory 

Th1 and reparative Th2 responses to prevent scarring and fibrotic repair, and boost 

regenerative healing instead.  

 

Concluding remarks 
Both evolutionary development and functional variety in current day organisms 

strongly support a notion of the immune system as an all-encompassing machinery 

to ensure system integrity. Protection from disease caused by invading pathogenic 

micro-organisms is, although the most easily observed, only one manifestation of the 

workings of this machinery. Instead, the immune system is essential for 

development, surveillance, protection and regulation to maintain or if necessary re-

establish homeostasis. 

 

 

Figure Legends: 
Figure 1: The fundamental roles of the Immune System beyound host defense: 
The Immune system is essential for reproduction, development and homeostasis. 

Sterile tissue damage such as physical trauma or ischaemia/reperfusion injury (e.g. 

myocardial infarct) induces an inflammatory reaction to initiate wound healing and/or 

regenerative mechanisms. The same basic immunological mechanisms will eliminate 

microbes if they are present due to injury at a barrier sites (e.g. skin) or primary 

infectious tissue damage (e.g. viral myocarditis). Necrotic cells in damaged tissue 

release danger associated molecular patterns (DAMPs) such as HMGB1, IL-33,  

ATP, heat shock proteins, nucleic acids and ECM degradation products. Microbes 

are recognised by the immune system through their expression of pathogen 

associated molecular patterns (PAMPs) 
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 such as LPS, flagellin, dsRNA, unmethylated CpG motifs in DNA. ATP: adenosine 

triphosphate, HMGB1: high mobility group box 1, ECM: extracellular matrix.  
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