511 research outputs found

    Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations

    Get PDF
    Waste heat recovery using an (organic) Rankine cycle is an important and promising technology for improving engine efficiency and thereby reducing the CO2 emissions due to heavy-duty transport. Experiments were performed using a Rankine cycle with water for waste heat recovery from the exhaust gases of a heavy-duty Diesel engine. The experimental results were used to calibrate and validate steady-state models of the main components in the cycle: the pump, pump bypass valve, evaporator, expander, and condenser. Simulations were performed to evaluate the cycle performance over a wide range of engine operating conditions using three working fluids: water, cyclopentane, and ethanol. Additionally, cycle simulations were performed for these working fluids over a typical long haul truck driving cycle. The predicted net power output with water as the working fluid varied between 0.5 and 5.7 kW, where the optimal expander speed was dependent on the engine operating point. The net power output for simulations with cyclopentane was between 1.8 and 9.6 kW and that for ethanol was between 1.0 and 7.8 kW. Over the driving cycle, the total recovered energy was 11.2, 8.2, and 5.2 MJ for cyclopentane, ethanol, and water, respectively. These values correspond to energy recoveries of 3.4, 2.5, and 1.6%, respectively, relative to the total energy requirement of the engine. The main contribution of this paper is the presentation of experimental data on a complete Rankine cycle-based WHR system coupled to a heavy-duty engine. These results were used to validate component models for simulations, allowing for a realistic estimation of the steady-state performance under a wide range of operating conditions for this type of system

    Collimator design for a clinical brain SPECT/MRI insert

    Get PDF
    This project's goal is to design a SPECT insert for a clinical MRI system for simultaneous brain SPECT/MR imaging. We assume the stationary SPECT insert will consist of two rings of ∼5x5-cm SiPM-based detectors insensitive to magnetic fields, with 0.8-mm intrinsic resolution. The maximum diameter is 44.5 cm, the minimum diameter is 33 cm to accommodate the patient and MRI receive/transmit coil, and the FOV has a 20 cm diameter. We have compared eight collimator designs: single-, 2x2-, 3x3- and 5+2½- pinhole, and single-, 2-, 3- and 1+2½-slit slit-slat, where ½-pinholes/slits are shared between two detectors. Analytical geometric efficiency was calculated for an activity distribution corresponding to a human brain and a target resolution of 10 mm FWHM at the centre of the FOV. Noise-free data were simulated with and without depth-of-interaction (DOI) information, and reconstructed for uniform, Defrise, Derenzo, and Zubal brain phantoms. For DOI it is assumed that the crystal's first and second half can be differentiated. Comparing the multi-pinhole and multi-slit slit-slat collimators, the former gives better reconstructed uniformity and trans-axial resolution, while the latter gives better axial resolution. Although the 2x2-pinhole and 2-slit designs give the highest sensitivities, they result in a sub-optimal utilization of the detector FOV. The best options are therefore the 5+2½-pinhole and the 1+2½-slit systems, with sensitivities of 4.9*10–4 and 4.0*10–4, respectively. The brain phantom reconstructions with multi-pinhole collimator are superior as compared to slit-slat, especially in terms of symmetry and realistic activity distribution. DOI information reduces artefacts and improves uniformity in geometric phantoms, although the difference is small for the brain phantom. These results favour a multi-pinhole configuration

    Suppressed Charge Dispersion via Resonant Tunneling in a Single-Channel Transmon

    Full text link
    We demonstrate strong suppression of charge dispersion in a semiconductor-based transmon qubit across Josephson resonances associated with a quantum dot in the junction. On resonance, dispersion is drastically reduced compared to conventional transmons with corresponding Josephson and charging energies. We develop a model of qubit dispersion for a single-channel resonance, which is in quantitative agreement with experimental data

    Optical Properties of Deep Ice at the South Pole - Absorption

    Get PDF
    We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800 to 1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice itself and in insoluble impurities. The absorption coefficient increases approximately exponentially with wavelength in the measured interval 410 to 610 nm. At the shortest wavelength our value is about a factor 20 below previous values obtained for laboratory ice and lake ice; with increasing wavelength the discrepancy with previous measurements decreases. At around 415 to 500 nm the experimental uncertainties are small enough for us to resolve an extrinsic contribution to absorption in ice: submicron dust particles contribute by an amount that increases with depth and corresponds well with the expected increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The laser pulse method allows remote mapping of gross structure in dust concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9 figures, not included, available on request from [email protected]

    Acquisition Correction and Reconstruction for a Clinical SPECT/MRI Insert

    Get PDF
    The development of the first clinical simultaneous Single Photon Emission Computed Tomography (SPECT) and Magnetic Resonance Imaging (MRI) system was carried out within the INSERT project. The INSERT scanner was constructed under the initial project, but its performance was not fully evaluated; here we have reconstructed the first images on the SPECT system. Calibration and acquisition protocols were developed and used to establish the clinical feasibility of the system. The image reconstruction procedures were implemented on the first phantom images in order to assess the system's imaging capabilities. This study solved issues involving incomplete data sets and pixel failure in the prototype detector system. The final images determined a measure of trans-axial image resolution, giving average values of 9.14 mm and 6.75 mm in the radial and tangential directions respectively. The work carried out on the complete system produced several clinical phantom images which utilized the capabilities of both SPECT and MRI
    • …
    corecore