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To Help or Not to Help: A Network Modelling
Approach to the Bystander Effect

Joey van den Heuvel and Jan Treur(&)

Social AI Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
joeyhilll@hotmail.com, j.treur@vu.nl

Abstract. This paper focuses on defining and simulating behavioural outcomes
of the bystander effect. These insights were modeled by temporal-causal net-
works. Typical patterns of bystander behaviour were translated into three
requirements and seven simulated scenarios of the bystander effect. All sce-
narios were simulated to showcase the main bystander effect dynamics and its
accordance with the literature. Unknown parameters of the effect were further
estimated by a Simulated Annealing algorithm. In the end, the created model
shows the potential to simulate the bystander effect in different and new sce-
narios. The created model adhered to the stated three requirements and shows
potential to verify the model predictions independently and for new bystander
situations.

Keywords: Bystander effect � Network modelling � Simulated annealing

1 Introduction

Helping other people occurs more frequently when alone than in the company of
passive bystanders [3]. This phenomenon is called the bystander effect, a prosocial
behaviour affected by the altruistic nature of people; e.g., [10], p. 328. Here, help is
defined as bystander intervention and occurs when a bystander offers support to the
victim(s). This support is either expressed verbally and/or physically, in such that it
affects the victim’s cognitive or behavioural state over time. Cases with no help offered
at all, are called bystander apathy. This was first investigated in the murder of Kitty
Genovese [14], which was the main driver in literature to investigate why bystanders
show these behavioural patterns [9, 14, 19].

With decades of subsequent research on the bystander effect topic (see Table 1 in
Fischer et al. [8]), this study builds upon earlier research by combining causal rela-
tionships. Many relationships and patterns were found in the research of [8] but only
focus on earlier research. By choosing some moderator variables from this research, the
combined impact of moderator variables within (new) bystander situations can be
determined. Within this paper, the following variables were chosen: Proportional
Dominance Effect (PDE), In-Group Effect (IGE), Effect Evaluation (E), Dangerous
emergency (DEm) and Distress (D) perception. These variables were firstly chosen due
to its strong and unambiguous character within the bystander effect [1, 8]. Secondly,
helping is often in line with the cost-reward model as the decision to act or not comes
with benefits and drawbacks [7, 18]. With balancing variables in the cost-reward
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model, potential bystander intervention and apathy models are more likely to be
simulated both.

As these five variables have an impact on the overall bystander effect, it is still
necessary to define how the bystander effect works. Therefore, a conceptual model of
Latané and Darley [15] is used as starting point for the bystander effect dynamics (see
Fig. 1). While this model shows conceptually how bystanders make decisions, it does
not clear where and how each moderator variables is incorporated. Also, with
numerous other variables available, it is hard to pinpoint what the realistic combined
total impact would be for every variable over time. Although, incorporating all found
variables will result in a too large model that lacks focus. By using an initial solution
that is in line with the cost-reward model, answers can still be found to gaps in the
literature (e.g. unclarity what the in-between effects are between variables in [6]). The
total combined impact of the five variables can be modeled within the temporal-causal
networks by combination functions. With this in mind, simulating the effects between
the five variables can be realised. The final goal of this paper is to determine what
settings of the network characteristics simulate the bystander effect most realistically.

2 The Network-Oriented Modelling Approach

First, the Network-Oriented Modelling approach is explained in some detail. The
approach was described in [20] and addresses how mental and behavioural states
change over time. For each state, characteristics are given to calculate the state value
over time, which leads to the opportunity of model complex processes in an easy,
structured and intuitive manner. This approach allows to incorporate temporal com-
plexity into causal graphs. In total, three network structure characteristics are used for a
model; together they define a temporal-causal network model:

• Connectivity: connection weights xX,Y from a state X to a state Y
• Aggregation: a combination function for each state Y, denoted by cY(..)
• Timing: a speed factor for each state Y, denoted by ηY

This is a model where the connections between states and other network charac-
teristics are defined in a declarative mathematical manner. By the developed dedicated

Fig. 1. Procedure for determining whether to help or not to help
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modeling environment (see [21], Chap. 9), the mentioned network characteristics are
transformed automatically into a numerical representation that can be used for simu-
lation, which has the definitions shown in Table 1.

3 The Introduced Temporal-Causal Network Model

In Fig. 1 an overview of the model for the bystander effect is shown. In total, four areas
were identified. For each area, an in-depth literature analysis was conducted to find
which variables belong to which area and/or which states Xk can be defined. Starting
with a situation where a potential bystander effect could first occur, is the perception of
the event. When an event is not perceived, the individual will not intervene at all. This
perception is dependent upon the individual sensory capabilities; e.g., [20], p. 213. In
this model, various variables were perceived from the world, processed and interpreted
by the sensory system, and given meaning to. The meaning is determined by making a
trade-off of all input variables and decide to act upon or not. This process is highly
similar to Fig. 1, where conceptually it is shown how the bystander effect works. Next,
the position of found states Xk require to be defined. In total, five variables were defined
which are all handled as a chain of states within a person. This chain means that each
variable has its perception of the world, the collection and interpretation of the sensory
input, leading to a certain meaning and belief to it. This chain starts with specified
values from the given variables, which are the costs and rewards. The following three
variables were identified: Identifiable Victim Effect (IVE), In Group Effect (IGE), and
the Propositional Dominance Effect (PDE) [5, 6, 13]. With clear effects in the latter
two, Fischer et al. [8] argue that the effect of helping someone familiar is not different
from an unknown person. Therefore, IVE remains unambiguous as a variable input

Table 1. Numerical representations for a temporal-causal network model

Concept Representation Explanation

State values
over time t

Y(t) At each time point t each state Y in
the model has a real number value in
[0, 1]

Single causal
impact

impactX,Y(t) = xX,Y X(t) At t state X with connection to state
Y has an impact on Y, using
connection weight xX,Y

Aggregating
multiple
impacts

aggimpactY(t)
= cY(impactX1,Y(t), …, impactXk,Y(t))
= cY(xX1,YX1(t), …, xXk,YXk(t))

The aggregated causal impact of
multiple states Xi on Y at t, is
determined using a combination
function cY(V1, …, Vk) and applying
it to the k single causal impacts

Timing of
the causal
effect

Y(t+Dt) = Y(t) + ηY [aggimpactY(t)
− Y(t)] Dt = Y(t) + ηY [cY(xX1,YX1(t),
…, xXk,YXk(t)) - Y(t)] Dt

The causal impact on Y is exerted
over time gradually, using speed
factor ηY; here the Xi are all states
from which state Y has incoming
connections
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variable. With this information, PDE and IGE remain within the scope of the research
and more clarity is needed on the IVE aspect. For PDE, Erlandsson et al. [6] state:

‘First, a within-subject contrast test showed that there was a linear trend on helping motivation,
F(1,38) = 55.67, p < 0.001, η2 = 0.594. As predicted, helping motivation increased as the victim
reference-group got smaller.’ (p. 5).

For IGE, the following is stated in the same paper:

‘First, a within-subject contrast test showed that there was a linear trend on helping motivation,
F(1,38) = 105.58, p < 0.001, η2 = 0.735. As predicted, helping motivation increased as the
victim became more part of one’s in-group’ (p. 6).

This shows that PDE and IGE are both strong determinants with IGE having a
larger effect. In both a cost and rewarding perspective, Dangerous Emergencies
(DEm) play a role in either one perspective dependent on how dangerous the situation
becomes. Fischer et al. [7] show that dangerous situations are perceived better and lead
to intervening more often than in non-dangerous situations. Therefore, when the
emergency need is low, one will show apathy more frequently (which is depicted in
Fig. 1 as well in step two). Also, the need to help will increase over time when the
situation becomes more dangerous. In the paper of Fischer et al. [8], it is stated:

‘In the present meta-analysis, perceived danger is reflected by the following coded variables:
(a) emergency danger (high vs. low), (b) perpetrator present versus absent (…) As expected,
non-emergencies (g = −0.47, SE = 0.041, Z = −11.42, p < 0.001, N = 22) yielded a larger
bystander effect than dangerous emergencies (g = −0.30, SE = 0.048, Z = −6.34, p < 0.001,
N = 65) and potentially dangerous villain acts (g = 0.29, SE = 0.101, Z = 2.82, p < 0.005,
N = 14)’ (p. 7).

Therefore, a key influence to the DEm is the presence of a fierce perpetrator [8].
With no fierce perpetrator present, bystander apathy will more likely occur and
intervention when that person is present. From a cost perspective only, Distress (D) is
added as it affects the bystander effect [2]. When the distress level is enhanced, an
avoidance or freezing dominated bystander apathy effect occurs [12]. Furthermore, in
this paper is stated that ‘only personal distress predicted the negative effect of
bystanders during an emergency.’ (p. 252). Determining the costs and rewards is
explained by the other states in the model. An individual evaluates (E) the situation all
the input and prepares an answer to the situation. For example, Fischer et al. [7] state:

‘Dangerous emergencies should be associated with a clearer and earlier recognition of the
emergency, resulting in an increased degree of empathic arousal, increased attribution of per-
sonal responsibility, and thus a greater willingness to accept increased costs for helping.’
(p. 270).

This means that the costs and rewards are weighed. Dovidio, Piliavin, Gaertner,
Schroeder, and Clark III [4] show that when the costs of helping are low, people will
more likely intervene when the net costs are high. The outcomes do not outweigh the
potential rewards from it, where the Effect Evaluation (E) plays a decisive role. This
intervention has a specific effect on the overall variables and whether it is smart to help
in a certain situation. All insights lead to Fig. 2, which show a temporal-causal model
for the bystander effect. In this case, only one individual is shown and determined for
whether they will show bystander apathy or intervention. All abbreviations mentioned
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in Fig. 2 are explained in a Table 2. Summarized, this network model contains state
variables (called states) starting with a world state wsx that affects the sensory state ssx
for a stimulus x. This leads to a sensory representation state srsx and a certain belief bx
of the bystander situation. Based on literature, other states have been added. The belief
of all discussed states influence the balance between positive influence pinf and negative
influence ninf. Next, a decision is prepared as psa and finally the actual action execution
is performed, modeled as esa.

Fig. 2. Connectivity of the temporal-causal network for an individual determining to help a
victim. The states and causal connections provide an overview of the factors that play a role in
the causation for the decision to help or not to help.

Table 2. Explanation of the states

State Nr Name Explanation

X1-5 wsx World state for stimulus x
X6-10 ssx Sensor state for stimulus x
X6 ssD Sensor state for stimulus Distress (D)
X7 ssDEm Sensor state for stimulus Dangerous Emergency (DEm)
X8 ssIGE Sensor state for stimulus In-Group Effect (IGE)
X9 ssPDE Sensor state for stimulus Proportional Dominance Effect (PDE)
X10 sse Sensor state for effect e
X11-15 srsx Sensory representation state for x
X16-22 bx Interpretation of sensory representation for x
X21 bDEmpinf Belief state for rewarding influence of a dangerous emergency situation
X22 bDEmninf Belief state for cost influence of a dangerous emergency situation
X23 ninf Interpretation of costs of incoming variables
X24 pinf Interpretation of rewards of incoming variables
X25 pos Prior ownership state for action a with incoming belief be
X26 psa Preparation state for response action a
X27 esa Execution state for action a
X28 fpp Presence of a fierce perpetrator
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4 Simulation Results

In order to determine the quality of the simulation, several patterns were found in the
previous section. These were written in the form of model requirements to show which
outcomes the bystander effect:

1. An increasing dangerous emergency situation will positively influence the
bystander intervention [8].

2. When a person has a strong IGE/PDE, the bystander will intervene in both situa-
tions but IGE will be faster than PDE [6].

3. When the costs overpowers the rewards, the probability of helping will decrease
(and increase when vice versa) [4].

All the given requirements were divided in seven scenarios to showcase the pat-
terns. For the first requirement, three scenarios are used to show how the likelihood of
intervening will increase with a higher danger perception. For this, three different
parameters were used to depict a dangerous emergency situation: low danger (0.2),
medium danger (0.5) and high danger (0.8). Each initial value is always chosen within
the scale of [0,1], using 0.5 as the person’s relative perception as what an average
danger is. The simulations are shown in Fig. 3. Here, as in the other graphs, time is on
the horizontal axis and activation level on the vertical axis. According to earlier found
research, there should be an increase in bystander intervention when the situation
becomes more dangerous until tipping point T. This tipping point leads to an individual
showing bystander intervention and not apathy anymore. In Fig. 3, the three respective
scenarios are depicted with an additional letter A for the intervention.

Fig. 3. Three different scenarios with DEm = 0.2 (left), DEm = 0.5 (middle), DEm = 0.8 (right).
Here A indicates the intervention.
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This letter shows four lines (depicted as A) that show the pattern of bystander
intervention as it slowly converges to value 1 in the latter two graphs. Generally, when
the belief be of the effect e is high, one will act in the situation (line depicted with B).
These lines are the most interesting of all depicted variables: they depict a positive
effect evaluation and thus a higher possibility of acting represented by esa. In the
dangerous situation of DEm = 0.2, no intervention is depicted as the individual will
show bystander apathy. In the middle graph, the faster intervention takes place as the
situation is more dangerous than the left one, which is according to the found pattern.
Interestingly, DEm = 0.8 does not yield a much faster intervention than DEm = 0.5.
This is most likely due to the higher costs of helping. For the second requirement, the
descriptive statistics in the research of Berggren et al. [1] were used. Both IGE and
PDE variables have an bystander intervention pattern when either one or both of the
values are high. The expected pattern would be that PDE leads to a faster intervention
due to η2 = 0.735 than the score of IGE with η2 = 0.594.

In Fig. 4, three scenarios are given with PDE = 0 and IGE = 1, PDE = 1 and
IGE = 0, and both variables with value one. In the last requirement, negative influences
should overpower the positive ones. A clear case to depict this, is a very distressed
situation (D = 1). This simulation is shown in Fig. 5.

Fig. 4. Simulations of different PDE/IGE values with left PDE = 0 and IGE = 1, in the middle
PDE = 1 and IGE = 0, and right both value one. As shown the bystander intervention occurs
faster from right to left.
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In the figure, no intervention and almost no dynamics are found in this graph. The
costs of the situation are too high, leading to no action at all. The scenario where
primarily positive outcomes do not require to be modelled again, as various examples
were given in Fig. 4 already.

5 Mathematical Verification of the Network Model

Based on the differential equation in Table 1, stationary points or equilibria of the
created model can be verified by calculating for states Xi in which dXi/dt = 0 the
aggimpactXi(t) for Xi and comparing the deviation of this to the simulation outcome
Xi(t); see Table 3. For this verification, the last graph of Fig. 3 (DEm = 0.8) was used to
calculate the mathematical validity of the model. For the chosen graph, the intervention
degree is almost in an equilibrium at time step t = 150. By doubling this amount to t =
300, it is assured that the equilibrium is certainly approximated. The following pro-
cedure described in [20], p. 327, is used for the mathematical verification:

Fig. 5. Simulations of a very distressed, dangerous emergency situation. The state of Esa
reaches at highest a value of 0.02.

Table 3. Mathematical verification of the created bystander effect model, based on the metrics
of the last graph of Fig. 3 at time point t = 300.

State Xi State name Xi(t) aggimpactXi(t) Deviation

X1 wsD 0 0 0
X2 wsDEm 0.8000 0.8000 0
X3 wsIGE 0 0 0
X4 wsPDE 0 0 0
X5 wse 0.9990 0.9990 5.16 * 10−8

X6 ssD 0 0 0
X7 ssDEm 0.6734 0.6734 −1.33 * 10−7

X8 ssIGE 0 0 0

(continued)
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1. The simulation is generated of DEm = 0.8.
2. For a number of states Y identify stationary points with their time points t and state

values Y(t).
3. For each of these stationary points for a state Y at time t identify the values X1(t), ..,

Xk(t) at that time of the states X1, .., Xk connected toward Y.
4. Substitute all these values Y(t) and X1(t), .., Xk(t) in the criterion cY(xX1,YX1(t), …,

xXk,YXk(t)) = Y(t) derived from Table 1.
5. If the equation holds (for example, with an accuracy <10−2), then this test succeeds,

otherwise it fails.
6. If this test fails, then it has to be explored were the error can be found.

The outcomes are provided in Table 3. As shown, the accuracy of each state is very
high with a deviation rate of <10−3. Therefore, the model shows evidence that it is
mathematically valid.

6 Validation Using Empirical Data and Parameter Tuning

In the simulation results section, three requirements with seven simulations were
already depicted. While this output shows interesting insights, many different scenarios
and other dependencies remain untested. The requirements were already based on

Table 3. (continued)

State Xi State name Xi(t) aggimpactXi(t) Deviation

X9 ssPDE 0 0 0
X10 sse 0.9990 0.9990 5.72812 * 10−8

X11 srsD 0 0 0
X12 srsDEm 0.6734 0.6734 −1.482 * 10−7

X13 srsIGE 0 0 0
X14 srsPDE 0 0 0
X15 srse 0.9990 0.9990 6.36 * 10−8

X16 bD 0 0 0
X17 bDEm 0.6734 0.6734 −1.65 * 10−7

X18 bIGE 0 0 0
X19 bPDE 0 0 0
X20 be 0.9929 0.9933 0.0038
X21 bDEmpinf 0.8798 0.8798 2.54 * 10−7

X22 bDEmninf 0.1202 0.1202 −2.54 * 10−7

X23 ninf 0.0820 0.0820 −2.24 * 10−7

X24 pinf 0.8205 0.8205 2.101 * 10−7

X25 pos 0.98999 0.99248 0.0025
X26 psa 0.99991 0.99997 6.35 * 10−5

X27 esa 0.99899 0.99904 4.994 * 10−5

X28 fpp 0.004 0.004 −1.85 * 10−6
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literature and clear effects were found between several moderating variables. However,
the requirements on itself could lead to a certain clash, which is still interesting to
further investigate. For example, on the one hand the first requirement is stated that an
increasing dangerous emergency will lead to more bystander intervention. On the other
hand, the third requirement states that costs will overpower the rewards, the probability
of helping will decrease. In situations where emergencies become more than highly
dangerous (DEm = [0.83,1]), investigating this further will further tune the overall
model. Outcomes of such models are depicted in Fig. 6.

In these three new scenarios, it is shown that primarily requirement three is still
true. The costs outweigh the rewards and thus the amount of rewards and intervening
(A) slowly becomes less likely. This brings two possible outcomes, which are either:

1) Requirement one remains true at all times, thus a very dangerous situation of
DEm = 1, never outweighs the costs, or

2) Requirement two remains true, thus the rewards are outweighed by the costs.

Both scenarios are tested with an algorithm called Simulated Annealing, which tries
to find what the most probable answer would be and which parameters come along. For
this, the middle scenario of DEm = 0.9 is chosen due to being a very dangerous
situation but remains an average very dangerous one. In total N = 14000 iterations with
the algorithm were performed, consisting of four runs of n = 3500. The parameter
tuning was executed by using the initial values of the states X23–X27. These values
were determined until the first possible execution in state X27, in such that the final
decision can be determined by the algorithm (see line B in Fig. 7). The chosen network
characteristics were tuned in multiple ways: the threshold s and speed values η of states
were tuned in all runs. Also, two different approaches were chosen, which were the
tuning of the connection weights xX,Y:

1) Only tuning the connection weights to state X27 (esa), which led to 12 character-
istics being tuned, and

2) In addition tuning all connection weights that start as incoming connection from
X23 till X27.

Fig. 6. Three different scenarios with DEm = 0.83 (left), DEm = 0.9 (middle), DEm = 1.0
(right). Here A depicts the intervening.
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This led to 16 characteristics being tuned. In Table 4 below, the results are shown
in terms of optimal values per scenario and what the root mean square error (RMSE) is.
This showcases an estimate of how the SA algorithm worked.

In Fig. 7, it is clear that requirement 3 overpowers the first requirement. The costs
are higher than the rewards, thus based on these parameters, the outcome would require
the first requirement to be adjusted: ‘An increasing dangerous emergency will posi-
tively influence the bystander intervention until tipping point T has reached. When this
point is reached, there is an increasing possibility of bystander apathy’. Finally, the
other runs in Table 4 were taken into account as well. It shows that run 3 (r3) and 4 (r4)
contradict the new requirement by stating requirement one remains true (see Fig. 8).
Further research is needed to state what happens when the situation is very dangerous.
When this is clear, the set of parameters can be used in Table 4.
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7 Discussion

The review of the literature led to insights into behaviour patterns. By transforming
these patterns into requirements, simulations were performed to test certain outcomes
of the bystander effect. In total, ten scenarios were tested and gave insights into several
expected patterns. The outcomes are following the empirical literature, which provides
a possibility to model more complicated patterns. By checking the mathematical
validity of the model, it is proven that the outcomes of the simulation are correct. Next,
the dependency of variables was checked by using the SA algorithm and simulating N
= 14000 cases. It was shown that the best scoring run, led to a refinement in the first
requirement. The created model adhered to the three identified requirements and shows
potential to verify the model predictions independently and for new bystander
situations.

Table 4. RMSE and outcomes of the SA-algorithm

Run Speed factors η Thresholds s Connection weights x RMSE

Run 1 -
12 characteristics
(i = 3500)

ninf = 0.715
pinf = 0.23
pos = 0.9659
psa = 0.689
esa = 0.168

ninf = 0.297
pinf = 0.10
pos = 0.23
psa = 0.47
esa = 0.24

xpos,esa = 0.82
xpsa,esa = 0.174

0.096326

Run 2 -
12 characteristics
(i = 3500)

ninf = 0.134
pinf = 0.272
pos = 0.55
psa = 0.511
esa = 0.063

ninf = 0.446
pinf = 0.916
pos = 0.10
psa = 0.6214
esa = 0.0003

xpos,esa = 0.79
xpsa,esa = 0.09

0.108578

Run 3 -
19 characteristics
(i = 3500)

ninf = 0.743
pinf = 0.84
pos = 0.999
psa = 0.145
esa = 0.05

ninf = 0.407
pinf = 0.693
pos = 0.554
psa = 0.076
esa = 0.409

xbe, pos = 0.599
xbe, psa = 0.599
xninf, pos = 0.603
xninf, psa = 0.603
xpinf, pos = 0.904
xninf, psa = 0.904
xpos, psa = 0.033
xpos, esa = 0.911
xpsa, esa = 0.913

0.132568

Run 4 -
19 characteristics
(i = 3500)

ninf = 0.44
pinf = 0.711
pos = 0.076
psa = 0.756
esa = 0.734

xbe, pos = 0.134
xbe, psa = 0.134
xninf, pos = 0.71
xninf, psa = 0.71
xpinf, pos = 0.1624
xninf, psa = 0.1624
xpos, psa = 0.494
xpos, esa = 0.827
xpsa, esa = 0.8317

0.155321
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Certain limitations in the work require more attention. In terms of the temporal-
causal model itself, the bystander effect is largely affected by other moderating non-
depicted variables as well. This provides a potential to incorporate these, such as group
size [3, 8, 16, 17], competency of bystanders [8], harm avoidance [11], and the further
investigation of IVE [1, 8]. Another interesting issue is the investigation of weak
connection weights between states. In Table 2, only relatively stronger relations are
shown, while multiple small impacts could alter the overall outcome. Such weak
connection weights could also be expressed in the way different individuals commu-
nicate with each other. Now, only one bystander is simulated while in real-life situa-
tions, multiple people are present. This leads to a certain shared responsibility, as
shown in Fig. 1. By defining the impact of different bystanders, more complex insights
can be modelled. Another way is to give more characteristics to the fierce perpetrator or
the victim as these are not within the focus of this paper. Lastly, the paper had a focus
on real-life situations while the bystander effect could occur online as well. Investi-
gating this in an online setting has an easier empirical data collection possibility than in
real life.
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