84 research outputs found

    Optimal Active Social Network De-anonymization Using Information Thresholds

    Full text link
    In this paper, de-anonymizing internet users by actively querying their group memberships in social networks is considered. In this problem, an anonymous victim visits the attacker's website, and the attacker uses the victim's browser history to query her social media activity for the purpose of de-anonymization using the minimum number of queries. A stochastic model of the problem is considered where the attacker has partial prior knowledge of the group membership graph and receives noisy responses to its real-time queries. The victim's identity is assumed to be chosen randomly based on a given distribution which models the users' risk of visiting the malicious website. A de-anonymization algorithm is proposed which operates based on information thresholds and its performance both in the finite and asymptotically large social network regimes is analyzed. Furthermore, a converse result is provided which proves the optimality of the proposed attack strategy

    Seeded Graph Matching: Efficient Algorithms and Theoretical Guarantees

    Full text link
    In this paper, a new information theoretic framework for graph matching is introduced. Using this framework, the graph isomorphism and seeded graph matching problems are studied. The maximum degree algorithm for graph isomorphism is analyzed and sufficient conditions for successful matching are rederived using type analysis. Furthermore, a new seeded matching algorithm with polynomial time complexity is introduced. The algorithm uses `typicality matching' and techniques from point-to-point communications for reliable matching. Assuming an Erdos-Renyi model on the correlated graph pair, it is shown that successful matching is guaranteed when the number of seeds grows logarithmically with the number of vertices in the graphs. The logarithmic coefficient is shown to be inversely proportional to the mutual information between the edge variables in the two graphs

    Distortion-Memory Tradeoffs in Cache-Aided Wireless Video Delivery

    Full text link
    Mobile network operators are considering caching as one of the strategies to keep up with the increasing demand for high-definition wireless video streaming. By prefetching popular content into memory at wireless access points or end user devices, requests can be served locally, relieving strain on expensive backhaul. In addition, using network coding allows the simultaneous serving of distinct cache misses via common coded multicast transmissions, resulting in significantly larger load reductions compared to those achieved with conventional delivery schemes. However, prior work does not exploit the properties of video and simply treats content as fixed-size files that users would like to fully download. Our work is motivated by the fact that video can be coded in a scalable fashion and that the decoded video quality depends on the number of layers a user is able to receive. Using a Gaussian source model, caching and coded delivery methods are designed to minimize the squared error distortion at end user devices. Our work is general enough to consider heterogeneous cache sizes and video popularity distributions.Comment: To appear in Allerton 2015 Proceedings of the 53rd annual Allerton conference on Communication, control, and computin

    Analysis of simple inventory control systems with execution errors: Economic impact under correction opportunities

    Get PDF
    Cataloged from PDF version of article.Motivated by recent empirical evidence, we study the economic impact of inventory record inaccuracies that arise due to execution errors. We model a set of probable events regarding the erroneous registering of sales at each demand arrival. We define correction opportunities that can be used to (at least partially) correct inventory records. We analyze a simple inventory control model with execution errors and correction opportunities, and demonstrate that decisions that consider the existence of recording errors and the mechanisms with which they are corrected can be quite complicated and exhibit complex tradeoffs. To evaluate the economic impact of inventory record inaccuracies, we use a simulation model of a (Q,r) inventory control system and evaluate suboptimalities in cost and customer service that arise as a result of untimely triggering of orders due to inventory record inaccuracies. We show that the economic impact of inventory record inaccuracies can be significant, particularly in systems with small order sizes and low reorder levels. (C) 2010 Elsevier BM. All rights reserved

    The Cauchy problem for a class of two-dimensional nonlocal nonlinear wave equations governing anti-plane shear motions in elastic materials

    Full text link
    This paper is concerned with the analysis of the Cauchy problem of a general class of two-dimensional nonlinear nonlocal wave equations governing anti-plane shear motions in nonlocal elasticity. The nonlocal nature of the problem is reflected by a convolution integral in the space variables. The Fourier transform of the convolution kernel is nonnegative and satisfies a certain growth condition at infinity. For initial data in L2L^{2} Sobolev spaces, conditions for global existence or finite time blow-up of the solutions of the Cauchy problem are established.Comment: 15 pages. "Section 6 The Anisotropic Case" added and minor changes. Accepted for publication in Nonlinearit

    Approximation Algorithms for Stochastic Inventory Control Models

    Full text link
    Approximation Algorithms for Stochastic Inventory Control Model

    Near-optimal modified base stock policies for the capacitated inventory problem with stochastic demand and fixed cost

    Get PDF
    In this study, we investigate a single-item, periodic-review inventory problem where the production capacity is limited and unmet demand is backordered. We assume that customer demand in each period is a stationary, discrete random variable. Linear holding and backorder cost are charged per unit at the end of a period. In addition to the variable cost charged per unit ordered, a positive fixed ordering cost is incurred with each order given. The optimization criterion is the minimization of the expected cost per period over a planning horizon. We investigate the infinite horizon problem by modeling the problem as a discrete-time Markov chain. We propose a heuristic for the problem based on a particular solution of this stationary model, and conduct a computational study on a set of instances, providing insight on the performance of the heuristic. © 2014 World Scientific Publishing Co
    corecore