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In this study, we investigate a single-item, periodic-review inventory problem where
the production capacity is limited and unmet demand is backordered. We assume that
customer demand in each period is a stationary, discrete random variable. Linear holding
and backorder cost are charged per unit at the end of a period. In addition to the variable
cost charged per unit ordered, a positive fixed ordering cost is incurred with each order
given. The optimization criterion is the minimization of the expected cost per period
over a planning horizon. We investigate the infinite horizon problem by modeling the
problem as a discrete-time Markov chain. We propose a heuristic for the problem based
on a particular solution of this stationary model, and conduct a computational study on
a set of instances, providing insight on the performance of the heuristic.

Keywords: Inventory; stochastic processes; capacity restriction; fixed ordering cost.

1. Introduction and Literature Review

To reduce the costs and gain a competitive advantage, firms must improve the effi-
ciency of their operations. Inventory management plays a key role in increasing
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O. Ö. Özener, R. Güllü & N. Erkip

efficiency. Matching supply and demand is a critical challenge and to become suc-
cessful at it, firms must lower inventory-related costs while satisfying customer
demand. Although the benefits are appealing, identifying the most effective inven-
tory control policy may be challenging. There is a significant amount of work in the
literature on characterizing the optimal inventory control policy under numerous
settings. We refer the reader to Girlich and Chikán (2001), which provides a histor-
ical analysis of development of the mathematical tools for inventory modeling such
as the ones in probability theory, stochastic processes, game theory and dynamic
programming.

Even though inventory related decisions are made at a firm level, a broader
view is often required as this process involves several firms in a supply chain. Sev-
eral factors such as cost structure, capacity restrictions, lead times, length of the
planning horizon contribute to the complexity of the inventory management activ-
ities. Thus, the most effective strategies for controlling inventories are difficult to
identify. Hence if the target is to identify optimal policy structure, one may need to
assume simpler environments. Well-defined structures are important learning tools
and probable candidates to become building blocks for more complicated environ-
ments. The basic newsvendor problem is one such example.

When the newsvendor model is extended to multiple periods, the optimal order-
ing policy becomes a base stock policy. In a base stock policy, if the initial inventory
position in any period is below a critical level S, enough should be ordered to bring
it up to S, otherwise nothing should be ordered (Scarf, 1960).

When a positive fixed ordering cost K is introduced, then optimal policy is an
(s, S) type policy (Scarf, 1960). In (s, S) policy, if the inventory position falls below
s, enough should be ordered to bring it up to S, otherwise nothing should be ordered.

When there is no fixed ordering cost, but a production capacity, then a modified
base stock policy is optimal (Federgruen and Zipkin, 1986). In this policy, if the
inventory position falls below S, enough should be ordered to bring it up to S; if
this is not possible then the full capacity should be ordered.

When a fixed ordering cost and a finite upper bound on the order amount are
both present in a single-item periodic inventory problem, the optimal ordering policy
has not been fully identified. Wjingaard (1972) presents a three-period problem
with deterministic demand where modified (s, S) type policies are not optimal. In a
modified (s, S) policy, if the inventory level falls below s, enough should be ordered
to bring the inventory position up to S or as close as possible to S. Shaoxiang
and Lambrecht (1996) attempt to characterize the optimal solution and suggest
that optimal policy shows a pattern of X–Y band structure. This structure can
be described as follows: It is optimal to order the full capacity when the inventory
level drops below X , and it is optimal to order nothing when the inventory level is
above Y . Between X and Y the ordering pattern depends on the problem. Gallego
and Scheller-Wolf (2000) extend the work of Shaoxiang and Lambrecht (1996) and
partially characterize the optimal ordering policy. They suggest dividing the space
into four regions and show that the optimal capacitated policy has an (s, S)-like
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structure, depending on the regions. In two of these regions, the optimal policy is
completely specified, while in the other two regions, it is partially specified. Chan
and Song (2003) provide an efficient algorithm to compute the optimal ordering
policy parameters and show that it is enough to compute optimal ordering quantities
for only a subset of inventory positions falling between X and Y bounds. Wijngaard
and van Foreest (2010) consider a variation of the problem where the continuous
production rate is finite and show that an (s, S) type policy is optimal. In this
setting, when the inventory level drops to s, a production is triggered (with a
set-up cost) and continued until the inventory level reaches S. Finally, Shaoxiang
(2004) proves that the length of the X–Y band cannot be more than the capacity
of a period. Shaoxiang (2004) also argues that the modified (s, S) policy is not
optimal for the infinite horizon problem (under discounted cost criterion), however,
shows that the computational performance of the modified (s, S) policy is generally
reasonable. In summary, this problem have been investigated in the literature for
more than 35 years, however, the optimal inventory policy structure has not been
entirely characterized yet.

In this study, we do not attempt to further explore the structural properties of
the problem. Rather, we intend to develop heuristic algorithms to generate near-
optimal solutions. We first model the infinite horizon problem as a discrete-time
Markov chain (DTMC) under a certain ordering policy with a stationary threshold.
Under this particular capacitated policy with an (s, S)-like structure, if the inven-
tory drops below a certain threshold then we order/produce up to a certain level. If
it is not possible to reach that order-up-to-level, we order/produce the full capacity.
Finally, if the inventory level is above the threshold, we do not order/produce. A
special case of this policy is called the “all-or-nothing” policy, which is discussed in
related works such as Gallego and Toktay (2004) and Ozer and Wei (2004). Ozer
and Wei (2004) note that in process industries such as oil and gas, sugar refining,
and steel or aluminum hot roll pressing, all-or-nothing type policies are commonly
observed due to high fixed costs of production. We apply this modified (s, S) policy
as a heuristic for the infinite planning horizon problem and compare its perfor-
mance with the other heuristics, the all-or-nothing policy and the modified base
stock policy, and finally with the optimal ordering policy computed with dynamic
programming (DP).

The study is organized as follows: In Sec. 2, we give the formal statement and
basic notation of the problem and provide some properties of the optimal order
policy for this problem. In Sec. 3, we investigate the infinite horizon problem by
defining the problem as a DTMC model. We develop a heuristic approach to the
infinite horizon problem, namely the “best (s, ∆) policy” and evaluate the perfor-
mance of this heuristic by comparing the results with two benchmark heuristics
the “all-or-nothing policy” and the “modified base stock policy” and the DP solu-
tion. The results of this comparison are presented in Sec. 4. Finally, we provide
concluding remarks in Sec. 5.
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2. Description of the Problem

We analyze a single-item, periodic-review production/inventory problem. We
assume that demand in any period is a discrete random variable, which is inde-
pendent and identically distributed from one period to another. Linear holding and
backorder costs are charged per unit of inventory at the end of each period and a
fixed ordering cost is associated with each order decision. Furthermore, the order-
ing quantity in any period is limited, with a positive capacity value. Without loss
of generality, as in Chan and Song (2003), we assume that the production/order
leadtime is zero. The objective is to minimize the expected cost per period over a
finite or infinite horizon.

The sequence of events is as follows: At the beginning of each period, consider-
ing the inventory position value, decision of how much to produce is made. Because
of the production capacity, it may not be possible to reach some inventory lev-
els by ordering. If production occurs, other than a variable production cost per
unit ordered, a fixed ordering cost is incurred for that period. The ordered amount
arrives instantaneously, then demand is realized and satisfied with on-hand inven-
tory. Unsatisfied demand is fully backordered, and holding and backorder costs are
charged at the end of the period.

2.1. Notation of the problem

The following notation is used throughout this study:

n: Period index.
Dn: Non-negative random demand of period n (when there are n periods left in

the planning horizon). Demand in any period is independent and identically
distributed from period to period with a probability distribution pr, i.e., pr :
Pr(D = r), r = 0, 1, . . .

C: Capacity of production, a positive integer. We assume E[D] < C for ensuring
long-run stationarity.

v: Unit variable cost.
b: Backorder cost per unit per period.
h: Holding cost per unit per period.

K: Fixed cost of ordering.
xn: Inventory position prior to placing any order in period n.
yn: Inventory position after placing an order, before demand is realized in period n.

Let L(y) be the one period expected holding and backorder cost function with
a given inventory position y in period n. L(y) can be expressed as;

L(y) = hE[(y − D)+] + bE[(D − y)+]. (1)

L(y) is a non-negative convex function and has a minimum point at a finite inven-
tory position. Let Jn(x) represent the expected optimal cost for an n-period horizon
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problem if the beginning inventory position is x. Let Gn(y) represent the expected
optimal cost for an n-period horizon problem if the inventory position after a pro-
duction decision is y. Let δ(z) be an indicator function showing whether a fixed
ordering cost is incurred or not (δ(z) = 1, when z > 0). Gn(y) and Jn(x) are
as follows:

Gn(y) = vy + L(y) + E[Jn−1(y − Dn)], (2)

Jn(x) = −vx + min
x≤y≤x+C

{Gn(y) + Kδ(y − x)}. (3)

We assume that at the end of the planning horizon, all leftover inventory is salvaged
with zero cost/profit. In other words, J0(·) = G0(·) = 0 for any inventory position
value.

Sn: Inventory position where the minimum of Gn(y) is achieved in any period n.
Global minimum of Gn(y) may not be unique; in that case the minimum of
these inventory levels is taken as Sn.

sn: Smallest inventory position where it is optimal not to order in period n.

2.2. An illustrative example

The optimal ordering policy of the single-period problem is a modified (s, S) type
policy. However, the single-period optimal policy cannot be extended to a multi-
period problem. We illustrate this phenomenon with an example. Even though the
example is for the finite horizon problem for the sake of proven optimality of the
order policy, it shows that the optimal order policy is not a simple monotone policy.
In rest of the paper, however, we analyze the infinite horizon problem. Suppose that
h = 1.0, b = 15.0, K = 55.0, v = 1.0, and C = 20 and demand is equal to 8 with
a probability of 0.95 and 9 with a probability of 0.05. In Fig. 1(a), the graph of
function G7(y) is presented. The function G7(y) has seven local minimum points
at inventory values 8, 17, 20, 24, 40, 48, and 56, and a global minimum point at
36. The local minimum points of Gn(y) correspond to the combinations of possible
demand values and the capacity. Because of the local minimum points the order
amount function has an unusual pattern.

We observe from the order quantity versus inventory position graph (Fig. 1(b))
that the order quantity is not a non-increasing function of the inventory position.
In fact, it is a combination of several modified (s, S) order quantity functions. We
observe from Fig. 1 that there exist several “kinks” in the curve of the optimal
order quantity, as a function of inventory level. These “kinks” in the order amount
function have resulted from the capacity constraint and the local minimum points.
Function Gn(y) is neither convex nor K-convex. Therefore, at a specific inventory
position y, it may be optimal to order less than capacity to reach a local minimum
point rather than full capacity, even though it is optimal to order full capacity at
an inventory position greater than y. Because of this property of the order quantity
function, it is difficult to determine the optimal policy for the multi-period problem.
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(a) Curve of G7(y)

Order
Quan ty

(b) Curve of optimal order quantity function

Fig. 1. Expected cost and order quantity functions of a seven-period-to-go problem with h = 1,
b = 15, K = 55, v = 1, C = 20, and D = 8 with probability 0.95, and D = 9 with probability
0.05.

In fact, for all the minimum points of the cost function, modified (s, S) policies
should be identified as in the single-period problem and then a combination of
these modified (s, S) policies will be the optimal order policy for the multi-period
problem. Unfortunately, as the number of periods-to-go increases, the number of
local minimum points also increases, and significantly, because the local minimum
points are combinations of possible demand values and capacity. Hence, it is difficult
to identify a general behavior of the order amount function and the optimal policy
structure of the multi-period problem. However, it is apparent that the optimal
policy for this problem structure will not be a simple monotone policy.
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3. Infinite Horizon Problem

3.1. Analysis of the proposed policy

In this section, we analyze the infinite horizon problem under average cost crite-
rion and stationary demand/cost parameters. We apply a modified (s, S) policy
characterized by a threshold level as the ordering policy for this problem.

We model the infinite horizon problem for the general discrete demand case
as a DTMC, by restricting the ordering policy to a modified (s, S) policy with a
threshold level. Our objective is to develop a well-performing policy that requires
minimal computational effort and simple enough to implement in practice. To this
end, we propose a capacitated policy with an (s, S)-like structure considering both
the capacity restriction and fixed cost. Specifically, this policy operates with two
parameters, the threshold level s and a minimum positive order quantity ∆. Because
the maximum amount that can be ordered is C, ∆ ∈ {1, 2, . . . , C}. At the beginning
of any period, if the inventory position is greater than or equal to s, then no order
is placed. Otherwise, an order is placed to raise the inventory position as close as
possible to S = s − 1 + ∆. Note that ∆ = 1 corresponds to the modified base
stock policy with the base stock level equal to s, and ∆ = C corresponds to the
all-or-nothing policy. For brevity, we name this policy the (s, ∆) policy.

Generally speaking, when the fixed cost is relatively low, optimal policy becomes
similar to the modified base stock policy, justifying even a low-quantity order if
required. On the other hand, when the fixed cost is relatively high, it might be
only economical to order at the capacity level. For all other cases, a different (s, ∆)
policy might provide a good approximation to the optimal policy. Next, we show
how the optimal values of two parameters are obtained.

We construct a DTMC for the problem under (s, ∆) policy and calculate the
expected average cost per period for a given (s, ∆) using steady state distribution.
Next, for a given ∆, we show that optimal s value is the smallest value that satisfies a
critical ratio similar to the basic newsvendor model. Finally, we calculate the optimal
∆ value based on the expected average cost per period and determine the best (s, ∆)
policy. A pseudo-code of this approach is presented in Sec. 3.2 (Algorithm 3.1).

The following sequence of events takes place in any period: At the beginning of
each period, depending on the inventory position, a decision to produce (order) may
be made. That is, if the inventory position is below s, production occurs. Other than
the variable production cost, a fixed ordering cost is incurred for that period. The
ordered amount arrives instantaneously, raising the inventory position (as leadtime
is zero, it is equivalent to the net inventory) by the produced (ordered) quantity.
Then, demand is realized and satisfied with on-hand inventory. Unsatisfied demand
is fully backordered, and corresponding holding and backorder costs are charged at
the end of the period.

Let xn+1 be the inventory level at the end of period n, and define Wn = S−xn+1

as the shortfall from S = s − 1 + ∆ at the end of the period. Let U(Wn) be
the amount ordered. Then, (s, ∆) policy prescribes that no order is placed at the
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beginning of period n+1 if Wn ∈ {0, 1, . . . , ∆− 1} (U(Wn) = 0), and an amount of
U(Wn) = min{Wn, C} is placed whenever Wn ∈ {∆, ∆+1, . . .}. After the realization
of demand Dn+1 in period n + 1, Wn+1 is obtained as Wn+1 = Wn − U(Wn) +
Dn+1 or

Wn+1 =




Wn + Dn+1, Wn ∈ {0, 1, . . . , ∆ − 1},
Dn+1, Wn ∈ {∆, . . . , C},
Wn − C + Dn+1, Wn ∈ {C + 1, C + 2, . . .}.

We note that the evolution of the process {Wn, n = 0, 1, . . .} depends on ∆,
but does not depend on s. In other words, once the initial shortfall is given (which
depends on s), the subsequent transitions are independent of s. Moreover, Wn and
Dn+1 are independent, thus it is clear that {Wn, n = 0, 1, . . .} is a DTMC on non-
negative integers for a given value of ∆. Transition probabilities, ai,j = Pr{Wn+1 =
j |Wn = i}, for this Markov chain can be obtained as:

ai,j =




0 for i ∈ {0, 1, . . . , ∆ − 1} and j < i,

pj−i for i ∈ {0, 1, . . . , ∆ − 1} and j ≥ i,

pj for i ∈ {∆, ∆ + 1, . . . , C} and j ≥ 0,

0 for i ∈ {C + 1, C + 2, . . .} and j < i − C,

pj+C−i for i ∈ {C + 1, C + 2, . . .} and j ≥ i − C.

{Wn, n = 0, 1, . . .} has a stationary distribution Π = {πi, i = 0, 1, . . .} provided
that E[D] =

∑∞
r=0 prr < C (see Sec. 3 of Glynn (1989)). Unfortunately, determining

Π is not easy. We employ a state reduction algorithm described in Heyman and Sobel
(1991) for numerically determining the steady state probabilities.

After determining the steady state probabilities, we formulate the expected aver-
age cost per period using these probabilities. Let W be the random variable denot-
ing the stationary shortfall with distribution Π and let AC(s, ∆) be the average
expected cost of an (s, ∆) policy for a given s and ∆. Then,

AC(s, ∆) = E[L(s + ∆ − 1 − W )1{W∈{0,1,...,∆−1}}]

+ E[L(s + ∆ − 1)1{W∈{∆,...,C}}]

+ E[L(s + ∆ − 1 − W + C)1{W∈{C+1,C+2,...}}]

+
∞∑

i=∆

πi(K + v min{i, C}), (4)

where 1{A} takes a value 1 if A is true, and takes 0 otherwise. Because L(y) is
convex in y, AC(s, ∆) is convex in s for a given ∆. Therefore, the minimizer value
of s for a given ∆ is obtained by

s∗(∆) = min{s : AC(s + 1, ∆) − AC(s, ∆) ≥ 0}.
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L(y + 1) − L(y) = −b + (h + b)F (y), where F (y) = Pr{D ≤ y}, thus we obtain
that

AC(s + 1, ∆) − AC(s, ∆) = −b + (h + b)E[F (s + ∆ − 1 − W )1{W∈{0,1,...,∆−1}}]

+ (h + b)E[F (s + ∆ − 1)1{W∈{∆,...,C}}]

+ (h + b)E[F (s + ∆ − 1 − W + C)1{W∈{C+1,C+2,...}}],

which can be rewritten as

AC(s + 1, ∆) − AC(s, ∆) = −b + (h + b)

{
∆−1∑
i=0

πi

s+∆−1−i∑
r=0

pr +
C∑

i=∆

πi

s+∆−1∑
r=0

pr

+
s+∆−1+C∑

i=C+1

πi

s+∆−1+C−i∑
r=0

pr

}
.

In the following result we show that the optimal value of s can be obtained from
the stationary distribution Π as a newsvendor critical level.

Proposition 1. The optimal threshold level for a given ∆ is the smallest s that
satisfies

∑s+∆−1
j=0 πj ≥ b

h+b .

Proof. We need to show that
s+∆−1∑

j=0

πj =
∆−1∑
i=0

πi

s+∆−1−i∑
r=0

pr +
C∑

i=∆

πi

s+∆−1∑
r=0

pr +
s+∆−1+C∑

i=C+1

πi

s+∆−1+C−i∑
r=0

pr.

By using the balance equations for the stationary distribution, we obtain
s+∆−1∑

j=0

πj =
s+∆−1∑

j=0

∞∑
i=0

πiai,j

=
∞∑

i=0

πi

s+∆−1∑
j=0

ai,j .

Then,
∆−1∑
i=0

πi

s+∆−1∑
j=0

ai,j =
∆−1∑
i=0

πi

s+∆−1∑
j=i

pi−j =
∆−1∑
i=0

πi

s+∆−1−i∑
r=0

pr,

C∑
i=∆

πi

s+∆−1∑
j=0

ai,j =
C∑

i=∆

πi

s+∆−1∑
j=0

pj , and

∞∑
i=C+1

πi

s+∆−1∑
j=0

ai,j =
s+∆−1+C∑

i=C+1

πi

s+∆−1∑
j=i−C

pj+C−i =
s+∆−1+C∑

i=C+1

πi

s+∆−1+C−i∑
r=0

pr,

and this concludes the proof.
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This newsvendor type result is expected because the threshold level only depends
on the holding cost, the backorder cost, and the demand distribution. As a result,
if the policy is specified as an (s, ∆) policy with the threshold level s and a given
∆ value, we calculate s∗(∆) by using the steady state distribution and unit backo-
rder/holding costs. Finally, the optimal ∆ value, which minimizes the expected cost
per period, is determined as follows:

∆∗ = argmin
∆∈{1,2,...,C}

AC(s∗(∆), ∆). (5)

The proposed policy parameter ∆ does not affect the expected cost per period
monotonically, as expected. In Fig. 2, we illustrate this relationship.

The following proposition establishes the relationship between s∗(∆) and ∆.

Proposition 2. Let s∗(∆∗) be the threshold level for the best (s, ∆) policy. Then
s∗(∆∗) ≤ s∗(1), where s∗(1) is the optimal threshold level for an (s, 1) policy (the
order-up-to-policy).

Proof. Let {Zn, n = 0, 1, . . .} be the shortfall process for a (s, 1) policy. Then,
Zn+1 = max(Dn+1, Dn+1 +Zn−C), n = 0, 1, . . . . Without loss of generality choose
Z0 and W0 in such a way that W0 ≤ Z0 + ∆ − 1. Suppose that Wn ≤ Zn + ∆ − 1
for some n ≥ 0. Then it follows that

Wn+1 ≤ max(Dn+1 + ∆ − 1, Wn − C + Dn+1)

≤ max(Dn+1 + ∆ − 1, Zn + ∆ − 1 − C + Dn+1)

= ∆ − 1 + max(Dn+1, Zn − C + Dn+1)

= ∆ − 1 + Zn+1.

80

100

120

140

160

180

200

0 20 40 60 80 100 120 

AC(s*, Delta)

Delta

Fig. 2. ∆ versus expected cost per period with optimal threshold level, s∗.
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The first inequality follows from the definition of Wn+1, and the second inequality
is due to the induction argument. Therefore, Wn ≤ Zn + ∆− 1 for all n = 0, 1, . . . .

Let W and Z be the limit random variables for Wn and Zn, respectively. Then,

Pr{W ≤ s + ∆ − 1} ≥ Pr{Z + ∆ − 1 ≤ s + ∆ − 1} = Pr{Z ≤ s}.
Hence, Pr{Z ≤ s} ≥ b/(h + b) implies that Pr{W ≤ s + ∆ − 1} ≥ b/(h + b) and
therefore s∗(∆) ≤ s∗(1) for any ∆ ∈ {1, 2, . . . , C} and the claim follows.

3.2. Testing the performance of the heuristic

We construct a DTMC for the infinite horizon problem and determine an optimal
threshold value using the steady state probabilities. In this section, we apply (1)
the (s, ∆) policy, (2) its more restricted version, the all-or-nothing policy (where
∆ = C), and finally (3) the modified base stock policy (where ∆ = 1) as heuristics
for the problem and test the performance of these heuristics on a set of instances.
In generating these instances, we use different combinations of problem parameters
such as demand distribution, cost parameters, and capacity values. For each setting,
we compute the average cost of the heuristics by simulating all three policies with
respective stationary threshold values. That is, we assume that a fixed policy for
every period and solve the underlying DTMC to obtain the policy parameters and
use these parameters to simulate the policies. Then, we compare the results of the
heuristics with the result of the DP model. We employ the algorithm below to
determine the best (s, ∆) policy. Note that ∆ = 1 corresponds to modified base
stock policy, ∆ = C corresponds to all-or nothing policy.

Algorithm 3.1 Determining the best (s, ∆) policy.
1: for ∆ = 1 → C do
2: Compute π using the Markov Chain transition probabilities and the state

reduction algorithm.
3: Compute s(∆) using Proposition 1.
4: Compute AC(s(∆), ∆) using (4).
5: Obtain ∆∗ from Eq. (5).
6: Obtain AC(s(∆∗), ∆∗) as the best (s, ∆) policy.
7: end for

We need to find the optimal solution via a DP model so to benchmark the
performance of the heuristics mentioned above. The main handicap of DP is that
as the number of periods-to-go increases, the number of possible initial inventory
values increases rapidly. If we could solve the dynamic program for sufficiently
large planning horizons, the average cost per period would converge and would be
independent of the initial inventory value at the beginning of the planning horizon.
However, this is not the case and the average cost values cannot recover from the
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dependence on the initial inventory value with the planning horizon that we consider
(1,000 periods) and thus remain a function of the initial inventory value.

Therefore, we consider all initial inventory levels between [µ−3σ, µ+3σ] where µ

is the expected value of the demand and σ is the standard deviation of the demand.
The maximum percentage deviation of the average cost of a heuristic from the
optimal average cost calculated by the DP model, θ, is calculated as:

θ = max
x∈[µ−3σ,µ+3σ]

Ãn(x) − An(x)
An(x)

× 100,

where An(x) is the expected cost per period for an n-period problem solved by DP,
given that the beginning inventory position is x and Ãn(x) is the expected cost
per period of a heuristic over the same planning horizon. We run a terminating
simulation for the same number of periods and the same initial inventory value
as the DP to calculate Ãn(x). Note that the maximum percentage deviation is
calculated over the interval [µ − 3σ, µ + 3σ]. If this maximum value occurs at a
boundary point, µ − 3σ or µ + 3σ, we extend the interval by σ and recalculate
the maximum percentage deviation value. We use this deviation value as a key
performance indicator in testing the performance of the heuristics.

4. Computational Study

In order to evaluate the performance of the heuristics more clearly, we perform two
different computational analyses. In the first analysis, we choose only eight sets of
demand distribution with certain characteristics and analyze the performance of
all heuristics on each demand set individually over 1,536 instances. Our motiva-
tion of this analysis is the fact that the optimal policy is significantly affected by
the demand distribution and in an aggregated result it is quite difficult to observe
this effect. Therefore, we choose representative demand distributions to mimic the
normal, uniform and Poisson type demand distributions, which are widely used in
analyzing inventory systems as well as a restrictive demand distribution similar to a
deterministic demand, which we observe to be the most challenging demand distri-
bution in this context. From this analysis, we gather valuable insights on the policy
and setting compatibility and the dominance of (s, ∆) policy over the other two.
The analysis might seem too restrictive as we specify the demand distributions even
though we experiment with different distributions. To this end, we perform a second
computational analysis where we randomly generate 100 sets of demand distribu-
tion of different characteristics. This is an extensive analysis conducted over 12,000
instances, which provides an unbiased overall evaluation of the three heuristics.

For the first analysis, we itemize the parameters used to generate different prob-
lem settings as follows:

• Demand Distribution: We experiment with eight sets of demand distribution,
all of which have an expected value of 19.05. For each demand set, we present
the possible demand values, their respective probabilities and the coefficient of
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Table 1. Demand distributions.

Dem. set Possible dem. values Probabilities CoV

1 15, 16, 17, 18, 19 0.03, 0.07, 0.1, 0.165, 0.24, 0.097
20, 21, 22, 23 0.175, 0.12, 0.07, 0.03

2 19, 20 0.95, 0.05 0.011

3 0, 27, 28, 30 0.3, 0.61, 0.06, 0.03 0.655

4 0, 5, 11, 20, 26, 29 0.01, 0.03, 0.26, 0.39, 0.25, 0.06 0.351

5 0, 14, 15, 35, 36 0.12, 0.29, 0.29, 0.16, 0.14 0.614

6 0, 1, 40 0.475, 0.05, 0.475 1.046

7 15, 16, 17, 18, 19 0.1114 for all 0.136
20, 21, 22, 23

8 12, 13, 14, 15 16, 17, 18 0.026, 0.038, 0.052, 0.066, 0.078, 0.088, 0.093 0.208
19, 20, 21, 22, 23, 24, 25 0.093, 0.089, 0.08, 0.069, 0.058, 0.046, 0.035
26, 27, 28, 29, 30, 31, 32 0.026, 0.018, 0.012, 0.008, 0.005, 0.003, 0.002

variation values in Table 1. The first set resembles the normal distribution with
several possible demand values whereas the second set is similar to the deter-
ministic demand and so consists of two possible demand values. The third set
has a high probability of having no demand in a period. The fourth set resem-
bles the normal distribution with higher standard deviation compared to the first
demand set. The fifth set has a bimodal type distribution. The sixth set has
the highest standard deviation. The seventh set resembles the uniform distribu-
tion with several possible demand values and finally, the eighth set resembles a
truncated Poisson distribution. For these eight sets of demand distributions, the
coefficient of variation varies between 0.011 and 1.046, respectively, which does
not seem to affect the performance of the heuristics. As will be discussed later,
discreteness of the demand distribution is likely to have an effect on the optimal
ordering structure, hence on the performance of the heuristics.

• Cost Parameters: We take the holding cost constant, h = 1, in our experi-
ments and relatively set the other cost parameters. The variable cost does not
affect the optimal policy, hence we take v = 0. The remaining cost param-
eters that we use in our computations are as follows: b ∈ {3, 5, 10, 20} and
K ∈ {10, 25, 50, 100, 200, 500}

• Capacity: The ratio of the expected demand in a period to the capacity value is
equal to the utilization of the capacity in the long run. We select the capacity val-
ues in our experiments so that the capacity utilization values are very high (such
as 95%, 90%, 85%, which corresponds to capacity-wise challenging instances), or
normal (such as 75%, 65%, 50%) and finally very low (such as 25%, 15%, which
corresponds to capacity-wise relaxed instances). Due to the integrality require-
ment of the capacity value, the resulting capacity utilization values turn out be
as follows: 95%, 90%, 86%, 76%, 65%, 50%, 25%, and 17%.
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We present the results for the first demand set in Table 2 and present the results
for the remaining demand sets in Appendix A. In Table 2, the column “95%-AVE”
presents the average θ value over the instances where the capacity utilization is 95%.
Similarly, the column “95%-MAX” presents the maximum θ value the instances
where the capacity utilization is 95%. The rest is similar. The first part of Table 2
presents the results for the best (s, ∆) policy, the second part presents the results for
the all-or-nothing policy and finally the last part presents the results for the modified
base stock policy. For example, the first row of Table 2 presents the average and
maximum θ value over all the instances with a fixed ordering cost of 10. Note that,
the best (s, ∆) policy cannot be worse than the all-or-nothing policy, as setting
∆ = C in the (s, ∆) policy leads to the all-or-nothing case. Having said that,
our computational results show that the performance of the best (s, ∆) policy is
significantly superior to the all-or-nothing policy and the modified base stock policy
for almost all the parameter settings that we considered. In a few settings (that we
present below) the best (s, ∆) policy occurs at ∆ = C.

We observe from the result in Table 2 that as the fixed ordering cost increases,
the performance of the all-or-nothing heuristic improves, which is in line with our
expectations. On the other hand, the performance of the modified base stock heuris-
tic deteriorates as the fixed cost increases. Also from Table 2, we see that as the
capacity utilization increases, the performance of both the all-or-nothing heuris-
tic and modified base stock heuristic improves. For the (s, ∆) heuristic, we do not
observe a clear pattern with respect to fixed ordering cost or capacity utilization,
however, the deviation results are almost equal to zero. Thus, the performance of
(s, ∆) heuristic is robust and consistently good with respect to all the parameters
in this demand setting.

Similar observations can be made for other distributions. For details, see the
results in Appendix A.

We summarize the results of the computational analysis in Table 3. The first
row of Table 3 presents the average and maximum deviations of the best (s, ∆)
policy, the all-or-nothing policy and the modified base stock policy over all 1,536
instances. In the next eight rows, the average and maximum deviations with respect
to different demand distributions are given. Similarly, the average and maximum
deviations are presented with respect to different fixed cost values in rows 10–15,
with respect to different capacity utilization values in rows 16–23.

We observe that the average percentage deviation of the best (s, ∆) policy from
the DP cost figures is 0.36%, whereas the maximum deviation is 4.88%. On the other
hand, we observe that the average percentage deviation of the all-or-nothing policy
from the DP cost figures is 18.26%, whereas the maximum deviation is 414.33%.
Finally, we observe that the average percentage deviation of the modified base
stock policy from the DP cost figures is 44.97%, whereas the maximum deviation is
369.83%. With respect to different demand distributions, the performance of best
(s, ∆) policy is consistently good, on the other hand the performances of all-or-
nothing heuristic and modified base stock heuristic are not only worse compared
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Table 3. Summary of results 1 — Best (s, ∆) policy, all-or-nothing policy and modified base stock
policy.

Best (s, ∆) All-or-not. Mod. base sto.

AVE MAX AVE MAX AVE MAX

Total 0.36 4.88 18.26 414.33 44.97 369.83

Demand Set1 0.16 2.51 23.15 314.90 55.20 363.64
Set2 0.25 3.49 34.84 414.33 58.24 362.12
Set3 0.50 4.35 20.52 266.35 26.77 230.06
Set4 0.13 1.17 11.91 199.53 51.71 357.72
Set5 0.39 3.68 8.53 156.73 38.96 309.10
Set6 0.75 3.50 13.15 182.38 17.03 158.08
Set7 0.22 2.20 20.50 304.72 55.07 365.41

Set8 0.48 4.88 13.49 208.89 56.77 369.83

Fixed cost 10 0.39 4.88 68.79 414.33 0.89 10.25
25 0.49 4.12 24.93 156.31 20.16 102.01
50 0.32 3.84 10.67 77.72 36.91 117.47

100 0.30 3.40 3.64 35.70 53.47 170.72
200 0.32 3.59 1.09 18.34 70.86 257.54
500 0.34 2.42 0.45 4.86 87.53 369.83

Capacity 95% 1.22 4.88 5.51 77.01 4.06 13.57
utilization 90% 0.41 2.26 5.24 77.16 6.32 19.48

86% 0.24 1.16 5.20 77.73 9.38 27.68
76% 0.17 2.08 5.60 80.62 20.05 46.87
65% 0.15 2.29 8.44 87.92 29.73 64.56
50% 0.32 3.49 13.30 116.46 56.63 102.01
25% 0.23 3.59 35.99 257.65 107.67 268.36
17% 0.13 2.42 66.82 414.33 125.90 369.83

to best (s, ∆) policy for all demand sets but also inconsistent in different demand
distributions. Note that there seems to be no effect of the value of the coefficient of
variation on the results observed. We believe that the effect of discreteness, as well
as the fact that there is only a limited number of demand values contributes more
to the result.

All the computations take under a minute meaning both simulating the DP
and the other polices. However, the real difficulty in computations is the excessive
memory requirements in simulating DP, which is due to the planning horizon and
the parameters such as capacity and possible demand values. This is the reason for
not generating a demand distribution with a longer tail. Also, we might not be able
to use DP for longer time horizons due to this memory restriction.

Next, we test the performance of the heuristics over randomly generated demand.
We generate 100 sets of demand distribution, all of which have an expected value
of 25. The demand sets generated are selected in equal number from each of the
following four distributions: Demand sets demand sets with a few (2–4) possible
demand values, demand sets resembling uniform distribution, demand sets resem-
bling normal distribution, demand sets resembling Poisson distribution. The last
three types of demand sets have a minimum of 7 and maximum of 15 possible
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nonzero demand values all between a lower and an upper bound so as to limit the
tails of the generated distributions. The uniform and normal type demand distri-
butions have specific intervals between the lower and the upper bound where all
integers correspond to realizable demand values. The probabilities are generated
using the respective demand distribution type and normalized so that the expected
value is equal to 25. The Poisson type distributions have randomly generated realiz-
able values between the lower and the upper bound, the corresponding probabilities
are computed using a Poisson distribution p.m.f. with a mean value of 25 and finally
normalized so that the expected value is equal to 25. We use the same parameter
sets for backorder cost and fixed cost. For these hundred sets of demand distri-
butions, the average of coefficient of variation values is equal to 0.547436 whereas
the maximum value is equal to 0.934067. As for the capacity values, we select the
capacity parameter so that the capacity utilization values are 89.3%, 76%, 50%,
33.3%, and 25%.

We summarize the results of the second computational analysis in Table 4. The
first row of Table 4 presents the average and maximum deviations of the best (s, ∆)
policy, the all-or-nothing policy and the modified base stock policy over all 12,000
instances. In the next four rows, the average and maximum deviations with respect
to different demand distribution sets, respectively almost deterministic discrete,
uniform, normal, and Poisson distributions, are given. Similarly, the average and
maximum deviations are presented with respect to different fixed cost values in rows
6–11, with respect to different capacity utilization values in rows 12–16. We observe
results similar to the first computational study. The average percentage deviation

Table 4. Summary of results 2 — Best (s, ∆) policy, all-or-nothing policy and modified base
stock policy.

Best (s, ∆) All-or-not. Mod. base sto.

AVE MAX AVE MAX AVE MAX

Total 0.14 8.15 18.20 467.26 43.21 251.60

Demand Set1 0.22 8.15 28.56 467.26 35.18 244.51
Set2 0.12 1.53 11.61 171.78 41.59 246.63
Set3 0.11 1.47 12.74 388.93 42.87 241.54
Set4 0.12 6.02 19.89 229.45 53.22 251.60

Fixed cost 10 0.09 1.44 63.18 467.26 1.11 11.54
25 0.09 2.64 28.39 369.76 4.75 82.81
50 0.20 8.15 11.22 332.49 29.87 92.32

100 0.18 4.22 3.95 276.70 57.65 148.94
200 0.14 2.51 1.66 207.18 76.39 210.42
500 0.16 2.11 0.81 118.13 89.52 251.60

Capacity 89% 0.31 1.44 9.50 467.26 5.48 21.71
utilization 76% 0.08 1.62 6.86 283.41 14.93 45.12

50% 0.15 8.15 15.18 289.66 41.06 98.85
33% 0.12 4.22 23.36 249.12 69.53 184.08
25% 0.06 2.11 36.10 346.49 85.07 251.60
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of the best (s, ∆) policy from the DP cost figures is 0.14%, whereas the maximum
deviation is 8.15%. The performance of the best (s, ∆) policy is consistently good
under all possible combinations of parameters and the average deviation value is
very close to zero. On the other hand, we observe that the average percentage
deviation of the all-or-nothing policy from the DP cost figures is 18.2%, whereas
the maximum deviation is 467.26%. Finally, we observe that the average percentage
deviation of the modified base stock policy from the DP cost figures is 43.21%,
whereas the maximum deviation is 251.6%. Again, all the computations take under
a minute.

As a conclusion, for the infinite horizon problem with capacity constraint and
the fixed cost, the (s, ∆) policy with a threshold level is a well-performing heuristic
under all combinations of problem parameters, even in problematic demand struc-
tures. This policy significantly outperforms both the all-or-nothing policy and the
modified base stock policy.

5. Conclusion

The optimal ordering policy for the stationary, single-item, multi-period inventory
problem under capacity constraints has not been completely characterized. There
exist some attempts to partially characterize the optimal policy, however the non-
monotonic characteristic of the ordering quantity as a function of inventory position
complicates the problem.

In this study, we construct a DTMC for the problem with stationary parameters
and an arbitrary discrete demand distribution under (s, ∆) policy. We define the
states of the Markov chain as the shortfall levels from the order-up-to-level. The
optimal threshold level turns out to be the point that satisfies the critical ratio of

b
b+h , as in the base stock policy. For this problem, we show that the optimal policy
is not a modified (s, S)-type policy, so the application basically is a heuristic.

To test the performance of the heuristic, we compare the average cost per period
through DP that finds a lower bound on the optimal solution, then we compare the
results with the ones we obtain from the DTMC model. The computational analysis
reveals that application of the best (s, ∆) policy as a heuristic to the problem
yields satisfactory results, significantly better than the all-or-nothing policy and
the modified base stock policy.

Appendix A

We present the result for the second demand set in Table A.1. Recall that in the
second demand set there are only two possible demand values. In Sec. 2.2, we illus-
trate with an example that this type of demand distribution results in a more kinky
order quantity function and hence presents a relatively more challenging instance.
Therefore, we expect the performance of the heuristics to be slightly lower compared
to the performance on the first set of instances. From the results in Table A.1, we
observe that this is in fact the case and the average deviation and the maximum
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Near-Optimal Modified Base Stock Policies
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deviation values for all the heuristics are greater than corresponding values of the
previous set of instances except a few exceptions. However, the deviation values for
the best (s, ∆) policy are still very close to zero.

We present the result for the third demand set in Table A.2. The significance
of this demand set is that the probability of having no demand in any period is
high, 30%, which seems to affect the performance of the best (s, ∆) policy and the
modified base stock policy when the capacity utilization is high.

We present the result for the fourth demand set in Table A.3. This demand set
is a discretized version of a normal distribution and has a higher standard deviation
compared to the first demand set. Interestingly, the performances of the heuristics
do not diminish as the standard deviation of the demand increases.

We present the result for the fifth demand set in Table A.4. This demand set
has a bimodal distribution and some of the demand values are much higher than
the expected value. This again affects the performance of the best (s, ∆) policy and
the modified base stock policy when the capacity utilization is high.

We present the result for the sixth demand set in Table A.5. This demand set
has the highest standard deviation value, which again affects the performance of the
best (s, ∆) policy and the modified base stock policy when the capacity utilization
is high.

We present the results for the seventh demand set, which resembles the uniform
distribution, and the eighth demand set, which resembles the Poisson distribution,
in Tables A.6 and A.7 respectively. Based on the results, we first observe that
Poisson type demand distribution presents a higher challenge compared to uniform
type demand distribution and next we observe that the performance of the best
(s, ∆) policy is superior to the others similar to the previous demand sets.
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