34 research outputs found

    Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment

    Full text link
    This is the peer reviewed version of the following article: Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut 64.12 (2015): 1921-1935 and which has been published in final form at http://dx.doi.org/10.1136/gutjnl-2014-308935OBJECTIVES: The tumour stroma/microenvironment not only provides structural support for tumour development, but more importantly it provides cues to cancer stem cells (CSCs) that regulate their self-renewal and metastatic potential. This is certainly true for pancreatic ductal adenocarcinomas (PDAC), where tumour-associated fibroblasts, pancreatic stellate cells and immune cells create an abundant paracrine niche for CSCs via microenvironment-secreted factors. Thus understanding the role that tumour stroma cells play in PDAC development and CSC biology is of utmost importance. DESIGN: Microarray analyses, tumour microarray immunohistochemical assays, in vitro co-culture experiments, recombinant protein treatment approaches and in vivo intervention studies were performed to understand the role that the immunomodulatory cationic antimicrobial peptide 18/LL-37 (hCAP-18/LL-37) plays in PDAC biology. RESULTS: We found that hCAP-18/LL-37 was strongly expressed in the stroma of advanced primary and secondary PDAC tumours and is secreted by immune cells of the stroma (eg, tumour-associated macrophages) in response to tumour growth factor-β1 and particularly CSC-secreted Nodal/ActivinA. Treatment of pancreatic CSCs with recombinant LL-37 increased pluripotency-associated gene expression, self-renewal, invasion and tumourigenicity via formyl peptide receptor 2 (FPR2)- and P2X purinoceptor 7 receptor (P2X7R)-dependent mechanisms, which could be reversed by inhibiting these receptors. Importantly, in a genetically engineered mouse model of K-Ras-driven pancreatic tumourigenesis, we also showed that tumour formation was inhibited by either reconstituting these mice with bone marrow from cathelicidin-related antimicrobial peptide (ie, murine homologue of hCAP-18/LL-37) knockout mice or by pharmacologically inhibiting FPR2 and P2X7R. CONCLUSIONS: Thus, hCAP-18/LL-37 represents a previously unrecognised PDAC microenvironment factor that plays a critical role in pancreatic CSC-mediated tumourigenesis.CH: ERC Advanced Investigator Grant (Pa-CSC 233460), European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 256974 (EPC-TM-NET) and n° 602783 (CAM-PaC), the Subdirección General de Evaluación y Fomento de la Investigación, Fondo de Investigación Sanitaria (PS09/02129 & PI12/02643) and the Programa Nacional de Internacionalización de la I+D, Subprogramma: FCCI 2009 (PLE2009-0105; both Ministerio de Economía y Competitividad (es), Spain), BSJr: Rámon y Cajal Merit Award from the Ministerio de Economía y Competitividad, Spain and Clinic and Laboratory Integration Program (CLIP) grant from the Cancer Research Institute, NY, NY. MC: La Caixa Predoctoral Fellowshi

    StellaTUM: current consensus and discussion on pancreatic stellate cell research

    Get PDF
    The field of pancreatic stellate cell (PSC) biology is very young, as the essential in-vitro tools to study these cells (ie, methods to isolate and culture PSC) were only developed as recently as in 1998. Nonetheless, there has been an exponential increase in research output in this field over the past decade, with numerous research groups around the world focusing their energies into elucidating the biology and function of these cells. It is now well established that PSC are responsible for producing the stromal reaction (fibrosis) of two major diseases of the pancreas—chronic pancreatitis and pancreatic cancer. Despite exponentially increasing data, the methods for studying PSC remain variable. Although within individual laboratories methods are consistent, different methodologies used by various research groups make it difficult to compare results and conclusions. This article is not a review article on the functions of PSC. Instead, members of the Pancreatic Star Alliance (http://www.pancreaticstaralliance.com) discuss here and consolidate current knowledge, to outline and delineate areas of consensus or otherwise (eg, with regard to methodological approaches) and, more importantly, to identify essential directions for future research

    Telomerase and pluripotency factors jointly regulate stemness in pancreatic cancer stem cells

    Get PDF
    © 2021 by the authors.To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the “stemness” maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients.This research was funded by a Max Eder Fellowship of the German Cancer Aid (111746), a German Cancer Aid Priority Program ‘Translational Oncology’ 70112505, by a Collaborative Research Centre grant (316249678—SFB 1279) of the German Research Foundation, and by a Hector Foundation Cancer Research grant (M65.1) to P.C.H., B.S.J. is supported by a Rámon y Cajal Merit Award (RYC2012-12104) from the Ministerio de Economía y Competitividad, Spain and a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC). K.W. is supported by a Baustein 3.2 by Ulm University

    Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis

    Get PDF
    Background: Interactions between mononuclear cells and activated pancreatic myofibroblasts (pancreatic stellate cells; PSC) may contribute to inflammation and fibrosis in chronic pancreatitis (CP). Methods: Markers of fibrosis and inflammation were concomitantly analysed by immunohistochemistry in chronic pancreatitis tissues. In vitro, PSC were stimulated with TNFalpha and LPS. Primary human blood mononuclear cells (PBMC) and PSC were cocultured, followed by analysis of cytokines and extracellular matrix (ECM) proteins. PBMC were derived from healthy donors and CP and septic shock patients. Results: In areas of mononuclear cell infiltration in chronic pancreatitis tissues, there was decreased immunoreactivity for collagen1 and fibronectin, in contrast to areas with sparse mononuclear cells, although PSC were detectable in both areas. LPS and TNFalpha induced collagen1 and fibronectin levels as well as the matrix degradation enzyme MMP-1. Coculture experiments with PSC and PBMC revealed increased fibronectin secretion induced by PBMC. In addition, donor and CP PBMC significantly induced an increase in IL-6, MCP-1 and TGFbeta levels under coculture conditions. Determination of the source of cytokines and ECM proteins by mRNA expression analysis confirmed PSC as major contributors of ECM production. The increase in cytokine expression was PBMC- and also PSC-derived. Conclusion: Mononuclear cells modulate the activity of pancreatic stellate cells, which may in turn promote fibrosis and inflammation

    Delivery of hepato-pancreato-biliary surgery during the COVID-19 pandemic: an European-African Hepato-Pancreato-Biliary Association (E-AHPBA) cross-sectional survey

    Get PDF
    Background: The extent of the COVID-19 pandemic and the resulting response has varied globally. The European and African Hepato-Pancreato-Biliary Association (E-AHPBA), the premier representative body for practicing HPB surgeons in Europe and Africa, conducted this survey to assess the impact of COVID-19 on HPB surgery. Methods: An online survey was disseminated to all E-AHPBA members to assess the effects of the pandemic on unit capacity, management of HPB cancers, use of COVID-19 screening and other aspects of service delivery. Results: Overall, 145 (25%) members responded. Most units, particularly in COVID-high countries (>100,000 cases) reported insufficient critical care capacity and reduced HPB operating sessions compared to COVID-low countries. Delayed access to cancer surgery necessitated alternatives including increased neoadjuvant chemotherapy for pancreatic cancer and colorectal liver metastases, and locoregional treatments for hepatocellular carcinoma. Other aspects of service delivery including COVID-19 screening and personal protective equipment varied between units and countries. Conclusion: This study demonstrates that the COVID-19 pandemic has had a profound adverse impact on the delivery of HPB cancer care across the continents of Europe and Africa. The findings illustrate the need for safe resumption of cancer surgery in a “new” normal world with screening of patients and staff for COVID-19

    Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals. The histone deacetylase (HDAC) inhibitor SAHA synergizes with JQ1 to augment cell death and more potently suppress advanced PDAC. Finally, using a CRISPR-Cas9–based method for gene editing directly in the mouse adult pancreas, we show that de-repression of p57 (also known as KIP2 or CDKN1C) upon combined BET and HDAC inhibition is required for the induction of combination therapy–induced cell death in PDAC. SAHA is approved for human use, and molecules similar to JQ1 are being tested in clinical trials. Thus, these studies identify a promising epigenetic-based therapeutic strategy that may be rapidly implemented in fatal human tumors

    Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma

    Get PDF
    [Objective]: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models.[Design]: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation.[Results]: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment.[Conclusion]: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.JCL-G received support from a 'la Caixa' Foundation (ID 100010434) fellowship (LCF/BQ/DR21/11880011). This study was supported by ISCIII FIS grants PI18/00757 and PI21/01110 (BSJ) and PI18/00267 (LG-B), and grants from the Spanish Ministry of Economy and Innovation SAF2016-76504-R (ACan and FP), PID2019-111052RB-I00 (FP), PID2019-104644RB-I00 (GM-B), a Ramón y Cajal Merit Award RYC-2012–12104 (BSJ) and ISCIII, CIBERONC, CB16/12/00446 (ACar) and CB16/12/00295 (ACan and GM-B), all of them co-financed through Fondo Europeo de Desarrollo Regional (FEDER) 'Una manera de hacer Europa'; a Fero Foundation Grant (BSJ); a Coordinated grant (GC16173694BARB) from the Fundación Científica Asociación Española Contra el Cáncer (FC-AECC) (BSJ); a Miguel Servet award (CP16/00121) (PS); a DFG, German Research Foundation Grant—Project no: 492 436 553 (KG); and a Max Eder Fellowship of the German Cancer Aid (111746) (PCH
    corecore