82 research outputs found

    Allergic Eosinophil-rich Inflammation Develops in Lungs and Airways of B Cell–deficient Mice

    Get PDF
    Immunoglobulins (Ig), particularly IgE, are believed to be crucially involved in the pathogenesis of asthma and, equally, in allergic models of the disease. To validate this paradigm we examined homozygous mutant C57BL/6 mice, which are B cell deficient, lacking all Ig. Mice were immunized intraperitoneally with 10 μg ovalbumin (OVA) plus alum, followed by daily (day 14–20) 30 min exposures to OVA aerosol (OVA/OVA group). Three control groups were run: OVA intraperitoneally plus saline (SAL) aerosol (OVA/SAL group); saline intraperitoneally plus saline aerosol; saline intraperitoneally plus OVA aerosol (n = 6–7). Lung and large airway tissues obtained 24 h after the last OVA or SAL exposure were examined by light microscopy and transmission electron microscopy (TEM). The Ig-deficient mice receiving OVA/ OVA treatment had swollen and discolored lungs and exhibited marked eosinophilia both in large airway subepithelial tissue (49.2 ± 12.0 cells/mm basement membrane [BM] versus OVA/ SAL control 1.2 ± 0.3 cells/mm BM; P <0.001), and perivascularly and peribronchially in the lung (49.3 ± 9.0 cells/unit area versus OVA/SAL control 2.6 ± 0.6 cells/unit area; P <0.001). The eosinophilia extended to the regional lymph nodes. TEM confirmed the subepithelial and perivascular localization of eosinophils. Mucus cells in large airway epithelium increased from 1.5 ± 0.8 (OVA/SAL mice) to 39.5 ± 5.7 cells/mm BM in OVA/OVA treated mice (P <0.001). OVA/SAL mice never differed from the other control groups. Corresponding experiments in wild-type mice (n = 6–7 in each group) showed qualitatively similar but less pronounced eosinophil and mucus cell changes. Macrophages and CD4+ T cells increased in lungs of all OVA/OVA-treated mice. Mast cell number did not differ but degranulation was detected only in OVA/OVA-treated wild-type mice. Immunization to OVA followed by OVA challenges thus cause eosinophil-rich inflammation in airways and lungs of mice without involvement of B cells and Ig

    Unravelling the complexity of tissue inflammation in uncontrolled and severe asthma

    No full text
    PURPOSE OF REVIEW: The clinical and inflammatory heterogeneity in asthma constitutes a major challenge for improved treatment. This review describes the nature of the inflammatory complexity and how it can be decoded to yield improved disease understanding and personalized treatment. The focus is on the difficult task of revealing the immunological complexity as it occurs inside diseased patient tissues. RECENT FINDINGS: The inflammatory heterogeneity in asthma stretches beyond the classical division into allergic Th2 eosinophilic versus Th1 and/or Th17 neutrophilic (or paucigranulocytic) phenotypes. Rather than having one distinct type of inflammation, many patients display a patchwork of overlapping immune signatures. The patient diversity is further increased by differences in regard of distal lung involvement. Faced with this staggering complexity, calls have been made for a pragmatic biomarker-guided identification of treatable traits. In parallel, novel high-dimensional analyses and multiplex imaging aid the long-term goal of decoding the underlying molecular endotypes. SUMMARY: Asthma is vastly heterogeneous with multiple and superimposed inflammatory and anatomical phenotypes. Despite the intensive research and introduction of highly immune-selective dugs, basic questions remain; especially as still too many of today's uncontrolled patients remain poorly understood. Here, pragmatic biomarker strategies, combined with novel methodological approaches that ultimately reveal the complete immunological complexity, will pave the way for improved differential diagnosis and personalized medication

    Anatomical and histopathological approaches to asthma phenotyping

    No full text
    Asthma is typically characterized by variable respiratory symptoms and airflow limitation. Along with the pathophysiology and symptoms are immunological and inflammatory processes. The last decades research has revealed that the immunology of asthma is highly heterogeneous. This has clinical consequences and identification of immunological phenotypes is currently used to guide biological treatment. The focus of this review is on another dimension of asthma diversity, namely anatomical heterogeneity. Immunopathological alterations may go beyond the central airways to also involve the distal airways, the alveolar parenchyma, and pulmonary vessels. Also, extrapulmonary tissues are affected. The anatomical distribution of inflammation in asthma has remained relatively poorly discussed despite its potential implication on both clinical presentation and response to treatment. There is today evidence that a significant proportion of the asthma patients has small airway disease with type 2 immunity, eosinophilia and smooth muscle infiltration of mast cells. The small airways in asthma are also subjected to remodelling, constriction, and luminal plugging, events that are likely to contribute to the elevated distal airway resistance seen in some patients. In cases when the inflammation extends into the alveolar parenchyma alveolar FCER1-high mast cells, eosinophilia, type 2 immunity and activated alveolar macrophages, together with modest interstitial remodelling, create a complex immunopathological picture. Importantly, the distal lung inflammation in asthma can be pharmacologically targeted by use of inhalers with more distal drug deposition. Biological treatments, which are readily distributed to the distal lung, may also be beneficial in eligible patients with more severe and anatomically widespread disease

    Remodeling of extra-bronchial lung vasculature following allergic airway inflammation-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Remodeling of extra-bronchial lung vasculature following allergic airway inflammation"</p><p>http://respiratory-research.com/content/9/1/18</p><p>Respiratory Research 2008;9(1):18-18.</p><p>Published online 8 Feb 2008</p><p>PMCID:PMC2254605.</p><p></p>reased following allergen challenge. Proliferation was detected using the proliferation-marker Ki67. A base line proliferation was present also in controls, however the number was very low and when correlated to the length of the basement membrane (BM), the values closed in on zero. The data are given as mean ± SEM and compared against control using the Wilcoxon Signed-ranks test, * indicates p < 0.05

    Remodeling of extra-bronchial lung vasculature following allergic airway inflammation-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Remodeling of extra-bronchial lung vasculature following allergic airway inflammation"</p><p>http://respiratory-research.com/content/9/1/18</p><p>Respiratory Research 2008;9(1):18-18.</p><p>Published online 8 Feb 2008</p><p>PMCID:PMC2254605.</p><p></p>(procollagen I: brown) and myofibroblasts (here defined as solitary cells co-positive for α-smooth muscle actin and procollagen I: co-positive), in both small solitary (A-B) and mid-sized solitary (C-D) vessels. In comparison with controls (A and C) vessels from OVA exposed animals (B and D) show a significantly increased smooth muscle area as well as increased number of myofibroblasts (arrows) and procollagen I-producing cells. Vascular lumen is indicated by stars. Scale bar represents 50 μm
    • …
    corecore