24 research outputs found
Fisheries Surveys Are Essential Ocean Observing Programs in a Time of Global Change: A Synthesis of Oceanographic and Ecological Data From U.S. West Coast Fisheries Surveys
As climate change and other anthropogenic impacts on marine ecosystems accelerate in the 21st century, there is an increasing need for sustained ocean time series. A robust and collaborative network of regional monitoring programs can detect early signs of unanticipated changes, provide a more holistic understanding of ecosystem responses, and prompt faster management actions. Fisheries-related surveys that collect fisheries-independent data (hereafter referred to as âfisheries surveysâ) are a key pillar of sustainable fisheries management and are ubiquitous in the United States and other countries. From the perspective of ocean observing, fisheries surveys offer three key strengths: (1) they are sustained due to largely consistent funding support from federal and state public sector fisheries agencies, (2) they collect paired physical, chemical, and biological data, and (3) they have large and frequently overlapping spatial footprints that extend into the offshore region. Despite this, information about fisheries survey data collection can remain poorly known to the broader academic and ocean observing communities. During the 2019 CalCOFI Symposium, marking the 70th anniversary of the California Cooperative Oceanic Fisheries Investigations (CalCOFI), representatives from 21 ocean monitoring programs on the North American West Coast came together to share the status of their monitoring programs and examine opportunities to leverage efforts to support regional ecosystem management needs. To increase awareness about collected ocean observing data, we catalog these ongoing ocean time series programs and detail the activities of the nine major federal or state fisheries surveys on the U.S. West Coast. We then present three case studies showing how fisheries survey data contribute to the understanding of emergent ecosystem management challenges: marine heatwaves, ocean acidification, and contaminant spills. Moving forward, increased cross-survey analyses and cooperation can improve regional capacity to address emerging challenges. Fisheries surveys represent a foundational blueprint for ecosystem monitoring. As the international community moves toward a global strategy for ocean observing needs, fisheries survey programs should be included as data contributors.publishedVersio
Household reporting of childhood respiratory health and air pollution in rural Alaska Native communities
Background. Air pollution is an important contributor to respiratory disease in children.
Objective. To examine associations between household reporting of childhood respiratory conditions and household characteristics related to air pollution in Alaska Native communities.
Design. In-home surveys were administered in 2 rural regions of Alaska. The 12-month prevalence of respiratory conditions was summarized by region and age. Odds ratios (ORs) were calculated to describe associations between respiratory health and household and air quality characteristics.
Results. Household-reported respiratory health data were collected for 561 children in 328 households. In 1 region, 33.6% of children aged/or bronchitis. Children with these conditions were 2 times more likely to live in a wood-heated home, but these findings were imprecise. Resident concern with mould was associated with elevated prevalence of respiratory infections in children (ORs 1.6â2.5), while reported wheezing was associated with 1 or more smokers living in the household. Reported asthma in 1 region (7.6%) was lower than national prevalence estimates.
Conclusions. Findings suggest that there may be preventable exposures, including wood smoke and mould that affect childhood respiratory disease in these rural areas. Additional research is needed to quantify particulate matter 2.5 microns in aerodynamic diameter or less and mould exposures in these communities, and to objectively evaluate childhood respiratory health
Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-Burning Stoves
BACKGROUND: Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating.
OBJECTIVES: Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves.
METHODS: A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5.
RESULTS: Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95%âconfidenceâintervalâ(CI) = â7.8 to â0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention.
CONCLUSIONS: Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV
Participation in collaborative fisheries research improves the perceptions of recreational anglers towards marine protected areas
Collaborative fisheries research programs engage stakeholders in data collection efforts, often with the benefit of increasing transparency about the status and management of natural resources. These programs are particularly important in marine systems, where management of recreational and commercial fisheries have historically been contentious. One such program is the California Collaborative Fisheries Research Program (CCFRP), which was designed in 2006 to engage recreational anglers in the scientific process and evaluate the efficacy of Californiaâs network of marine protected areas. CCFRP began on the Central Coast of California and expanded statewide in 2017 to include six partner institutions in three regions: Northern, Central, and Southern California. To date, over 2,000 volunteer anglers have participated in the program, with many anglers volunteering for multiple years. However, the impacts of outreach, education, and collaborative research on those anglers at the statewide scale are currently unknown. Thus, the objective of the current study was to survey the statewide pool of volunteer anglers to assess the degree to which participation in CCFRP has influenced angler perceptions of MPAs, fisheries management, and conservation. We received 259 completed surveys out of a pool of 1,386 active anglers, equating to an 18.7% response rate. Participation in CCFRP resulted in a significant, positive impact on anglersâ attitudes towards MPAs in California across all regions. Anglers who participated in six or more CCFRP fishing trips had a more positive perception of MPAs than those who participated in fewer trips. Volunteer anglers across all regions perceived that they caught larger fishes, a higher abundance of fishes, and a greater diversity of species inside MPAs, consistent with the ecological findings of the program. These results highlight the benefits of involving community members in collaborative scientific research. Collaboration between researchers and the broader community increases transparency and trust between stakeholders, and results in greater understanding of natural resource dynamics, ultimately producing better management outcomes
Collaborative fisheries research reveals reserve size and age determine efficacy across a network of marine protected areas
A variety of criteria may influence the efficacy of networks of marine protected areas (MPA) designed to enhance biodiversity conservation and provide fisheries benefits. Meta-analyses have evaluated the influence of MPA attributes on abundance, biomass, and size structure of harvested species, reporting that MPA size, age, depth, and connectivity influence the strength of MPA responses. However, few empirical MPA evaluation studies have used consistent sampling methodology across multiple MPAs and years. Our collaborative fisheries research program systematically sampled 12 no-take or highly protective limited-take MPAs and paired fished reference areas across a network spanning 1100 km of coastline to evaluate the factors driving MPA efficacy across a large geographic region. We found that increased size and age consistently contributed to increased fish catch, biomass, and positive species responses inside MPAs, while accounting for factors such as latitude, primary productivity, and distance to the nearest MPA. Our study provides a model framework to collaboratively engage diverse stakeholders in fisheries research and provide high-quality data to assess the success of conservation strategies
Participation in collaborative fisheries research improves the perceptions of recreational anglers towards marine protected areas
Collaborative fisheries research programs engage stakeholders in data collection efforts, often with the benefit of increasing transparency about the status and management of natural resources. These programs are particularly important in marine systems, where management of recreational and commercial fisheries have historically been contentious. One such program is the California Collaborative Fisheries Research Program (CCFRP), which was designed in 2006 to engage recreational anglers in the scientific process and evaluate the efficacy of Californiaâs network of marine protected areas. CCFRP began on the Central Coast of California and expanded statewide in 2017 to include six partner institutions in three regions: Northern, Central, and Southern California. To date, over 2,000 volunteer anglers have participated in the program, with many anglers volunteering for multiple years. However, the impacts of outreach, education, and collaborative research on those anglers at the statewide scale are currently unknown. Thus, the objective of the current study was to survey the statewide pool of volunteer anglers to assess the degree to which participation in CCFRP has influenced angler perceptions of MPAs, fisheries management, and conservation. We received 259 completed surveys out of a pool of 1,386 active anglers, equating to an 18.7% response rate. Participation in CCFRP resulted in a significant, positive impact on anglersâ attitudes towards MPAs in California across all regions. Anglers who participated in six or more CCFRP fishing trips had a more positive perception of MPAs than those who participated in fewer trips. Volunteer anglers across all regions perceived that they caught larger fishes, a higher abundance of fishes, and a greater diversity of species inside MPAs, consistent with the ecological findings of the program. These results highlight the benefits of involving community members in collaborative scientific research. Collaboration between researchers and the broader community increases transparency and trust between stakeholders, and results in greater understanding of natural resource dynamics, ultimately producing better management outcomes
Effects of Traffic-Related Air Pollution on Cognitive Function, Dementia Risk and Brain MRI Findings in the Cardiovascular Health Study
Thesis (Ph.D.)--University of Washington, 2012Consistent and compelling links between long-term air pollutant exposure and respiratory and cardiovascular disease have been established. Far less is known regarding the impact of air pollution on the brain. Using residence-specific estimates of long-term air pollutant exposure based on regulatory monitors, we investigated the effects of particulate matter 10) and nitrogen dioxide (NO2) on cognitive decline, dementia risk and brain MRI-detected findings in the Cardiovascular Health Study (CHS), a large cohort of older adults residing in three communities in the U.S. Both pollutants were associated with significantly steeper cognitive decline, assessed by the Modified Mini-Mental State Examination and the Digit Symbol Substitution Test in linear regression analyses with generalized estimating equations. In logistic and Cox regression analyses, neither air pollutant was linked significantly to higher risk of prevalent or incident dementia or Alzheimer's disease. However, a 10 ÎŒg/m3 elevation in estimated long-term PM10 exposure was associated with 2.45-fold increase in odds of prevalent vascular dementia (95% CI: 1.23, 4.86). The same elevation in PM10 exposure was associated with a 0.14-unit worse white matter grade (95% CI: 0.01, 0.27), and a 10 ppb increase in NO2 exposure was associated with a 0.37-unit worse white matter grade (95% CI: 0.14, 0.61). Worsening white matter between MRIs and MRI-detected infarcts were not significantly associated with PM10 or NO2 exposure. In summary, we found significant associations between estimated long-term exposure to air pollutants and faster rates of cognitive decline, elevated risk of vascular dementia (VaD) and higher white matter grade on brain MRI. Our findings add to the existing strong rationale for limiting exposure to air pollutants
Granite Rock Outcrops: An Extreme Environment for Soil Nematodes?
We studied soil nematode communities from the surface of granite flatrock outcrops in the eastern Piedmont region of the United States. The thin soils that develop here experience high light intensity and extreme fluctuations in temperature and moisture and host unique plant communities. We collected soils from outcrop microsites in Virginia (VA) and North Carolina (NC) in various stages of succession (Primitive, Minimal, and Mature) and compared soil properties and nematode communities to those of adjacent forest soils. Nematodes were present in most outcrop soils, with densities comparable to forest soils (P > 0.05). Nematode communities in Mature and Minimal soils had lower species richness than forest soils (P < 0.05) and contained more bacterial-feeders and fewer fungal-feeders (P < 0.05). Primitive soils contained either no nematodes (NC) or only a single species (Mesodorylaimus sp., VA). Nematode communities were similar between Mature and Minimal soils, according to trophic group representation, MI, PPI, EI, SI, and CI (P > 0.05). Forest soils had a higher PPI value (P < 0.05), but otherwise community indices were similar to outcrop soils (P > 0.05). Outcrop nematode communities failed to group together in a Bray-Curtis cluster analysis, indicating higher variability in community structure than the Forest soils, which did cluster together. A high proportion of the nematodes were extracted from outcrop soils in coiled form (33-89%), indicating that they used anhydrobiosis to persist in this unique environment
Protecting Life and Lung: Protected Areas Affect Fine Particulate Matter and Respiratory Hospitalizations in the Brazilian Amazon Biome
There is growing recognition of the connection between ecosystem conservation and human health. For example, protection of tropical forests can affect the spread of infectious diseases, water quality, and dietary diversity, while forest loss can have important consequences for respiratory health due to the use of fire for converting land to alternative uses in many countries. Studies demonstrating links between ecosystems and health often conclude with recommendations to expand policies that protect natural ecosystems. However, there is little empirical evidence on the extent to which conservation policies actually deliver health benefits when they are implemented in real contexts. We estimate the effects of protected areas (PAs), the dominant type of conservation policy, on hospitalizations for respiratory illness in the Brazilian Amazon biome. We find that doubling upwind PAs reduces PM2.5 by 10% and respiratory hospitalizations by 7% in the months of most active biomass burning. Brazil has an extensive network of PAs, but investments in management and enforcement have declined in recent years. Forest fires have increased dramatically over the same period. We estimate that the value of the health benefits exceed current average expenditures on PA management for the 1/3 of PAs with the largest local populations, although not for PAs in more remote locations. Our findings highlight how quantifying the contributions to the wellbeing of local populations can support conservation objectives, even if global environmental benefits are not a high priority for decision makers.</p