201 research outputs found

    Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli

    Get PDF
    Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffnesschondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process

    Sex-Biased Gene Flow Among Elk in the Greater Yellowstone Ecosystem

    Get PDF
    We quantified patterns of population genetic structure to help understand gene flow among elk populations across the Greater Yellowstone Ecosystem. We sequenced 596 base pairs of the mitochondrial control region of 380 elk from eight populations. Analysis revealed high mitochondrial DNA variation within populations, averaging 13.0 haplotypes with high mean gene diversity (0.85). The genetic differentiation among populations for mitochondrial DNA was relatively high (FST = 0.161; P = 0.001) compared to genetic differentiation for nuclear microsatellite data (FST = 0.002; P = 0.332), which suggested relatively low female gene flow among populations. The estimated ratio of male to female gene flow (mm/mf = 46) was among the highest we have seen reported for large mammals. Genetic distance (for mitochondrial DNA pairwise FST) was not significantly correlated with geographic (Euclidean) distance between populations (Mantel’s r = 0.274, P = 0.168). Large mitochondrial DNA genetic distances (e.g., FST . 0.2) between some of the geographically closest populations (,65 km) suggested behavioral factors and/or landscape features might shape female gene flow patterns. Given the strong sex-biased gene flow, future research and conservation efforts should consider the sexes separately when modeling corridors of gene flow or predicting spread of maternally transmitted diseases. The growing availability of genetic data to compare male vs. female gene flow provides many exciting opportunities to explore the magnitude, causes, and implications of sex-biased gene flow likely to occur in many species

    The Association of Patient Factors, Digital Access, and Online Behavior on Sustained Patient Portal Use: A Prospective Cohort of Enrolled Users

    Get PDF
    BACKGROUND: As electronic health records and computerized workflows expand, there are unprecedented opportunities to digitally connect with patients using secure portals. To realize the value of patient portals, initial reach across populations will need to be demonstrated, as well as sustained usage over time. OBJECTIVE: The study aim was to identify patient factors associated with short-term and long-term portal usage after patients registered to access all portal functions. METHODS: We prospectively followed a cohort of patients at a large Department of Veterans Affairs (VA) health care facility who recently completed identity proofing to use the VA patient portal. Information collected at baseline encompassed patient factors potentially associated with portal usage, including: demographics, Internet access and use, health literacy, patient activation, and self-reported health conditions. The primary outcome was the frequency of portal log-ins during 6-month and 18-month time intervals after study enrollment. RESULTS: A total of 270 study participants were followed prospectively. Almost all participants (260/268, 97.0%) reported going online, typically at home (248/268, 92.5%). At 6 months, 84.1% (227/270) of participants had visited the portal, with some variation in usage across demographic and health-related subgroups. There were no significant differences in portal log-ins by age, gender, education, marital status, race/ethnicity, distance to a VA facility, or patient activation measure. Significantly higher portal usage was seen among participants using high-speed broadband at home, greater self-reported ability using the Internet, and routinely going online. By 18 months, 91% participants had logged in to the portal, and no significant associations were found between usage and demographics, health status, or patient activation. When examining portal activity between 6 and 18 months, patients who were infrequent or high portal users remained in those categories, respectively. CONCLUSIONS: Short-term and long-term portal usage was associated with having broadband at home, high self-rated ability when using the Internet, and overall online behavior. Digital inclusion, or ready access to the Internet and digital skills, appears to be a social determinant in patient exposure to portal services

    Distinct Roles of Mus81, Yen1, Slx1-Slx4, and Rad1 Nucleases in the Repair of Replication-Born Double-Strand Breaks by Sister Chromatid Exchange

    Get PDF
    Most spontaneous DNA double-strand breaks (DSBs) arise during replication and are repaired by homologous recombination (HR) with the sister chromatid. Many proteins participate in HR, but it is often difficult to determine their in vivo functions due to the existence of alternative pathways. Here we take advantage of an in vivo assay to assess repair of a specific replication-born DSB by sister chromatid recombination (SCR). We analyzed the functional relevance of four structure-selective endonucleases (SSEs), Yen1, Mus81-Mms4, Slx1-Slx4, and Rad1, on SCR in Saccharomyces cerevisiae. Physical and genetic analyses showed that ablation of any of these SSEs leads to a specific SCR decrease that is not observed in general HR. Our work suggests that Yen1, Mus81-Mms4, Slx4, and Rad1, but not Slx1, function independently in the cleavage of intercrossed DNA structures to reconsti-tute broken replication forks via HR with the sister chromatid. These unique effects, which have not been detected in other stud-ies unless double mutant combinations were used, indicate the formation of distinct alternatives for the repair of replication- born DSBs that require specific SSEs.Ministerio de Ciencia e Innovación FU2010-16372, CSD2007-015Junta de Andalucía BIO102 and CVI4567National Institutes of Health GM5801

    An Evolutionarily Conserved Enhancer Regulates Bmp4 Expression in Developing Incisor and Limb Bud

    Get PDF
    To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium

    Multivalent HA DNA Vaccination Protects against Highly Pathogenic H5N1 Avian Influenza Infection in Chickens and Mice

    Get PDF
    Sustained outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA) proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates

    Cellular Basis of Tissue Regeneration by Omentum

    Get PDF
    The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells

    Китаб Ибрагима Хосеневича из коллекции Национальной библиотеки Республики Беларусь как исторический источник : реферат к дипломной работе / Инна Чеславовна Кевра; БГУ, Исторический факультет, Кафедра источниковедения; науч. рук. Белявский А.М.

    Get PDF
    The construct of individualism–collectivism (IND-COL) has become the definitive standard in cross-cultural psychology, management, and related fields. It is also among the most controversial, in particular, with regard to the ambiguity of its dimensionality: Some view IND and COL as the opposites of a single continuum, whereas others argue that the two are independent constructs. We explored the issue through seven different tests using original individual-level data from 50 studies and meta-analytic data from 149 empirical publications yielding a total of 295 sample-level observations that were collected using six established instruments for assessing IND and COL as separate constructs. Results indicated that the dimensionality of IND-COL may depend on (a) the specific instrument used to collect the data, (b) the sample characteristics and the cultural region from which the data were collected, and (c) the level of analysis. We also review inconsistencies, deficiencies, and challenges of conceptualizing IND-COL and provide guidelines for developing and selecting instruments for measuring the construct, and for reporting and meta-analyzing results from this line of research
    corecore