4,247 research outputs found

    Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip

    Get PDF
    Using the recursive Green's function technique, we study the coherent electron conductance of a quantum point contact in the presence of a scanning probe microscope tip. Images of the coherent fringe inside a quantum point contact for different widths are obtained. It is found that the conductance of a specific channel is reduced while other channels are not affected as long as the tip is located at the positions correspending to that channel. Moreover, the coherent fringe is smoothed out by increasing the temperature or the voltage across the device. Our results are consistent with the experiments reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page

    Observation of Collective Excitations of the Dilute 2D Electron System

    Full text link
    We report inelastic light scattering measurements of dispersive spin and charge density excitations in dilute 2D electron systems reaching densities less than 10^{10} cm^{-2}. In the quantum Hall state at nu=2, roton critical points in the spin inter--Landau level mode show a pronounced softening as r_s is increased. Instead of a soft mode instability predicted by Hartree--Fock calculations for r_s ~ 3.3, we find evidence of multiple rotons in the dispersion of the softening spin excitations. Extrapolation of the data indicates the possibility of an instability for r_s >~ 11.Comment: Submitted to Physical Review Letter

    On the origin of high m magnetospheric waves

    Get PDF
    A survey of Advanced Rio-Imaging Experiment in Scandinavia data reveals evidence for a previously overlooked generation mechanism of high azimuthal wave number magnetospheric waves. Here we present observations of pulsating cosmic noise absorption with azimuthal wave numbers as high as 380, suggestive of precipitation modulation by magnetospheric waves. Dispersion relations of the small-scale precipitation pulsations are indicative of the proposed origin. Previous studies of magnetospheric waves, together with data from the Charge And Mass Magnetospheric Ion Composition Experiment (Magnetospheric Ion Composition Sensor) instrument aboard the Polar spacecraft, provide support for the theory

    Broadband UBVRI Photometry of Horizontal-Branch and Metal-Poor Candidates from the HK and Hamburg/ESO Surveys. I

    Get PDF
    We report broadband UBV and/or BVRI CCD photometry for a total of 1857 stars in the thick-disk and halo populations of the Galaxy. The majority of our targets were selected as candidate field horizontal-branch or other A-type stars (FHB/A, N = 576), or candidate low-metallicity stars (N = 1221), from the HK and Hamburg/ESO objective-prism surveys. Similar data for a small number of additional stars from other samples are also reported. These data are being used for several purposes. In the case of the FHB/A candidates they are used to accurately separate the lower-gravity FHB stars from various higher-gravity A-type stars, a subsample that includes the so-called Blue Metal Poor stars, halo and thick-disk blue stragglers, main-sequence A-type dwarfs, and Am and Ap stars. These data are also being used to derive photometric distance estimates to high-velocity hydrogen clouds in the Galaxy and for improved measurements of the mass of the Galaxy. Photometric data for the metal-poor candidates are being used to refine estimates of stellar metallicity for objects with available medium-resolution spectroscopy, to obtain distance estimates for kinematic analyses, and to establish initial estimates of effective temperature for analysis of high-resolution spectroscopy of the stars for which this information now exists.Comment: 22 pages, including 3 figures, 5 tables, and two ascii files of full data, accepted for publication in the Astrophysical Journal (Supplements

    Broadband UBVR_CI_C Photometry of Horizontal-Branch and Metal-poor Candidates from the HK and Hamburg/ESO Surveys. I.

    Get PDF
    We report broadband UBV and/or BVR_CI_C CCD photometry for a total of 1857 stars in the thick-disk and halo populations of the Galaxy. The majority of our targets were selected as candidate field horizontal-branch or other A-type stars (FHB/A, N = 576), or candidate low-metallicity stars (N = 1221), from the HK and Hamburg/ESO objective-prism surveys. Similar data for a small number of additional stars from other samples are also reported. These data are being used for several purposes. In the case of the FHB/A candidates they are used to accurately separate the lower gravity FHB stars from various higher gravity A-type stars, a subsample that includes the so-called blue metal poor stars, halo and thick-disk blue stragglers, main-sequence A-type dwarfs, and Am and Ap stars. These data are also being used to derive photometric distance estimates to high-velocity hydrogen clouds in the Galaxy and for improved measurements of the mass of the Galaxy. Photometric data for the metal-poor candidates are being used to refine estimates of stellar metallicity for objects with available medium-resolution spectroscopy, to obtain distance estimates for kinematic analyses, and to establish initial estimates of effective temperature for analysis of high-resolution spectroscopy of the stars for which this information now exists

    Valley splitting in strained silicon quantum wells

    Full text link
    A theory based on localized-orbital approaches is developed to describe the valley splitting observed in silicon quantum wells. The theory is appropriate in the limit of low electron density and relevant for proposed quantum computing architectures. The valley splitting is computed for realistic devices using the quantitative nanoelectronic modeling tool NEMO. A simple, analytically solvable tight-binding model is developed, it yields much physical insight, and it reproduces the behavior of the splitting in the NEMO results. The splitting is in general nonzero even in the absence of electric field in contrast to previous works. The splitting in a square well oscillates as a function of S, the number of layers in the quantum well, with a period that is determined by the location of the valley minimum in the Brillouin zone. The envelope of the splitting decays as S3S^3. Finally the feasibility of observing such oscillations experimentally in modern Si/SiGe heterostructures is discussed.Comment: 19 pages, including 4 figure

    The future of enterprise groupware applications

    Get PDF
    This paper provides a review of groupware technology and products. The purpose of this review is to investigate the appropriateness of current groupware technology as the basis for future enterprise systems and evaluate its role in realising, the currently emerging, Virtual Enterprise model for business organisation. It also identifies in which way current technological phenomena will transform groupware technology and will drive the development of the enterprise systems of the future

    Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings

    Full text link
    We study how general two Higgs doublet models can be constrained by considering their properties under renormalization group evolution of the Yukawa couplings. We take into account both the appearance of a Landau pole as well as off-diagonal Yukawa couplings leading to flavour changing neutral currents in violation with experimental constraints at the electroweak scale. We find that the latter condition can be used to limit the amount of Z2 symmetry breaking allowed in a given model.Comment: 28 pages, 10 figures, added discussion of evolution from high to low scales, to be published in JHE
    corecore