6,573 research outputs found

    Magnetic properties of Ruddlesden-Popper phases Sr3−x_{3-x}Yx_{x}(Fe1.25_{1.25}Ni0.75_{0.75})O7−δ_{7-\delta}: A combined experimental and theoretical investigation

    Get PDF
    We present a comprehensive study of the magnetic properties of Sr3−x_{3-x}Yx_{x}(Fe1.25_{1.25}Ni0.75_{0.75})O7−δ_{7-\delta} (0≤x≤0.750 \leq x \leq 0.75). Experimentally, the magnetic properties are investigated using superconducting quantum interference device (SQUID) magnetometry and neutron powder diffraction (NPD). This is complemented by the theoretical study based on density functional theory as well as the Heisenberg exchange parameters. Experimental results show an increase in the N\'eel temperature (TNT_N) with the increase of Y concentrations and O occupancy. The NPD data reveals all samples are antiferromagnetically ordered at low temperatures, which has been confirmed by our theoretical simulations for the selected samples. Our first-principles calculations suggest that the 3D magnetic order is stabilized due to finite inter-layer exchange couplings. The latter give rise to a finite inter-layer spin correlations which disappear above the TNT_N

    Electron correlations in Mnx_xGa1−x_{1-x}As as seen by resonant electron spectroscopy and dynamical mean field theory

    Get PDF
    After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its origin is still debated, and many doubts are related to the electronic structure. Here we report an experimental and theoretical study of the valence electron spectrum of Mn-doped GaAs. The experimental data are obtained through the differences between off- and on-resonance photo-emission data. The theoretical spectrum is calculated by means of a combination of density-functional theory in the local density approximation and dynamical mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver. Theory is found to accurately reproduce measured data, and illustrates the importance of correlation effects. Our results demonstrate that the Mn states extend over a broad range of energy, including the top of the valence band, and that no impurity band splits off from the valence band edge, while the induced holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure

    Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER

    Full text link
    Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. Sixteen red giants and supergiants have been observed with the VLTI/AMBER facility over a two-years period, at medium spectral resolution (R=1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant temporal variation, except for one target: TX Psc, which shows a variation of 4% using visibility data. For the eight targets previously measured by Long-Baseline Interferometry (LBI) in the same spectral range, the difference between our diameters and the literature values is less than 5%, except for TX Psc, which shows a difference of 11%. For the 8 other targets, the present angular diameters are the first measured from LBI. Angular diameters are then used to determine several fundamental stellar parameters, and to locate these targets in the Hertzsprung-Russell Diagram (HRD). Except for the enigmatic Tc-poor low-mass carbon star W Ori, the location of Tc-rich stars in the HRD matches remarkably well the thermally-pulsating AGB, as it is predicted by the stellar-evolution models. For pulsating stars with periods available, we compute the pulsation constant and locate the stars along the various sequences in the Period -- Luminosity diagram. We confirm the increase in mass along the pulsation sequences, as predicted by the theory, except for W Ori which, despite being less massive, appears to have a longer period than T Cet along the first-overtone sequence.Comment: 15 pages, 9 figures, 6 table

    The new normal for coastal states

    Get PDF
    Safe and efficient maritime transportation is vital to both economic and environmental sustainability. Marine Aids to Navigation (AtoN) are key to helping all types of vessel navigate safely and efficiently and Governments have an international obligation under the IMO Safety of Life at Sea (SOLAS) Convention to provide them in accordance with the volume of traffic and degree of risk. The aim of IALA is to foster the safe, economic, and efficient movement of vessels, through improvement and harmonisation of AtoN worldwide, for the benefit of the maritime community and the protection of the environment. This aim can be achieved through coastal States implementing the IALA standards to create an effective network of aids to navigation that both enhance the safety of navigation and the efficient movement of vessels. The IALA standards provide a framework for harmonization, supported by a suite of guidance documents providing options, suggestions, and best practices as to how AtoN may be implemented for maximum effectiveness. The IALA World-Wide Academy, through its strategy of enlightenment, education and engagement can assist coastal States in the implementation of the IALA standards and compliance with the SOLAS Convention through a range of activities designed to increase national operational and technical capability. The new normal for coastal States includes new types of risk as marine navigation becomes more digitized and ships become more automatized, remotely operated and even autonomous. This development requires coastal States to be proactive and well prepared for what the future will bring.Papers presented at the 40th International Southern African Transport Conference on 04 -08 July 202

    Electronic structure of the strongly hybridized ferromagnet CeFe2

    Full text link
    We report on results from high-energy spectroscopic measurements on CeFe2, a system of particular interest due to its anomalous ferromagnetism with an unusually low Curie temperature and small magnetization compared to the other rare earth-iron Laves phase compounds. Our experimental results indicate very strong hybridization of the Ce 4f states with the delocalized band states, mainly the Fe 3d states. In the interpretation and analysis of our measured spectra, we have made use of two different theoretical approaches: The first one is based on the Anderson impurity model, with surface contributions explicitly taken into account. The second method consists of band-structure calculations for bulk CeFe2. The analysis based on the Anderson impurity model gives calculated spectra in good agreement with the whole range of measured spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably reduced at the surface, resulting in even stronger hybridization in the bulk than previously thought. The band-structure calculations are ab initio full-potential linear muffin-tin orbital calculations within the local-spin-density approximation of the density functional. The Ce 4f electrons were treated as itinerant band electrons. Interestingly, the Ce 4f partial density of states obtained from the band-structure calculations also agree well with the experimental spectra concerning both the 4f peak position and the 4f bandwidth, if the surface effects are properly taken into account. In addition, results, notably the partial spin magnetic moments, from the band-structure calculations are discussed in some detail and compared to experimental findings and earlier calculations.Comment: 10 pages, 8 figures, to appear in Phys. Rev. B in December 200
    • …
    corecore