114 research outputs found

    Removal of Cu2+ and Ni2+ from Aqueous Solution using SnO2 Nanomaterial effect of: pH, Time, Temperature, interfering cations

    Get PDF
    Tin oxide, SnO2, nanomaterial was synthesized and tested for the removal of Cu2+ and Ni2+ ions from aqueous solutions. Various parameters for the binding were investigated in batch studied, which included pH, time, temperature, and interferences. In addition, isotherm studied were performed to determine the maximum binding capacity for both Cu2+ and Ni2+ ions. The optimal binding pH determined from the effects of pH were to be at pH 5 for both the Cu2+ and Ni2+ ions. The isotherm studies were performed at temperatures of 4°C, 25 °C, and 45 °C for both the Cu2+ and Ni2+ ions and were found to follow the Langmuir isotherm model. The binding capacities for the Cu2+ ions were 2.63 mg/g, 2.95 mg/g and 3.27 mg/g at the aforementioned temperatures, respectively. Whereas the binding capacities for Ni2+ were 0.79 mg/g, 1.07 mg/g, and 1.46 mg/g at the respective temperatures. The determined thermodynamic parameters for the binding showed that the binding processes for the reactions were endothermic, as the ΔG was observed to decrease with decreasing temperatures. As well the ΔH was 28.73 kJ/mol for Cu2+ (III) and 13.37 kJ/mol for Ni2+. The ΔS was observed to be 92.65 J/mol for Cu2+ and 54.53 J/mol for Ni2+. The free energy of adsorption for the Cu2+ was determined to be 13.99 kJ/mol and the activation energy for the binding of Ni2+ was determined to be 8.09 KJ/mol. The activation energy data indicate that the reaction was occurring through chemisorptio

    Foregut microbiome in development of esophageal adenocarcinoma

    Get PDF
    Esophageal adenocarcinoma (EA), the type of cancer linked to heartburn due to gastroesophageal reflux diseases (GERD), has increased six fold in the past 30 years. This cannot currently be explained by the usual environmental or by host genetic factors. EA is the end result of a sequence of GERD-related diseases, preceded by reflux esophagitis (RE) and Barrett’s esophagus (BE). Preliminary studies by Pei and colleagues at NYU on elderly male veterans identified two types of microbiotas in the esophagus. Patients who carry the type II microbiota are >15 fold likely to have esophagitis and BE than those harboring the type I microbiota. In a small scale study, we also found that 3 of 3 cases of EA harbored the type II biota. The findings have opened a new approach to understanding the recent surge in the incidence of EA. 

Our long-term goal is to identify the cause of GERD sequence. The hypothesis to be tested is that changes in the foregut microbiome are associated with EA and its precursors, RE and BE in GERD sequence. We will conduct a case control study to demonstrate the microbiome disease association in every stage of GERD sequence, as well as analyze the trend in changes in the microbiome along disease progression toward EA, by two specific aims. Aim 1 is to conduct a comprehensive population survey of the foregut microbiome and demonstrate its association with GERD sequence. Furthermore, spatial relationship between the esophageal microbiota and upstream (mouth) and downstream (stomach) foregut microbiotas as well as temporal stability of the microbiome-disease association will also be examined. Aim 2 is to define the distal esophageal metagenome and demonstrate its association with GERD sequence. Detailed analyses will include pathway-disease and gene-disease associations. Archaea, fungi and viruses, if identified, also will be correlated with the diseases. A significant association between the foregut microbiome and GERD sequence, if demonstrated, will be the first step for eventually testing whether an abnormal microbiome is required for the development of the sequence of phenotypic changes toward EA. If EA and its precursors represent a microecological disease, treating the cause of GERD might become possible, for example, by normalizing the microbiota through use of antibiotics, probiotics, or prebiotics. Causative therapy of GERD could prevent its progression and reverse the current trend of increasing incidence of EA

    Activity-Based Hydrazine Probes for Protein Profiling of Electrophilic Functionality in Therapeutic Targets

    Get PDF
    Most known probes for activity-based protein profiling (ABPP) use electrophilic groups that tag a single type of nucleophilic amino acid to identify cases in which its hyper-reactivity underpins function. Much important biochemistry derives from electrophilic enzyme cofactors, transient intermediates, and labile regulatory modifications, but ABPP probes for such species are underdeveloped. Here, we describe a versatile class of probes for this less charted hemisphere of the proteome. The use of an electron-rich hydrazine as the common chemical modifier enables covalent targeting of multiple, pharmacologically important classes of enzymes bearing diverse organic and inorganic cofactors. Probe attachment occurs by both polar and radicaloid mechanisms, can be blocked by molecules that occupy the active sites, and depends on the proper poise of the active site for turnover. These traits will enable the probes to be used to identify specific inhibitors of individual members of these multiple enzyme classes, making them uniquely versatile among known ABPP probes

    Hydrazines as versatile chemical biology probes and drug-discovery tools for cofactor-dependent enzymes [preprint]

    Get PDF
    Known chemoproteomic probes generally use warheads that tag a single type of amino acid or modified form thereof to identify cases in which its hyper-reactivity underpins function. Much important biochemistry derives from electron-poor enzyme cofactors, transient intermediates and chemically-labile regulatory modifications, but probes for such species are underdeveloped. Here, we have innovated a versatile class of chemoproteomic probes for this less charted hemisphere of the proteome by using hydrazine as the common chemical warhead. Its electron-rich nature allows it to react by both polar and radicaloid mechanisms and to target multiple, pharmacologically important functional classes of enzymes bearing diverse organic and inorganic cofactors. Probe attachment can be blocked by active-site-directed inhibitors, and elaboration of the warhead supports connection of a target to a lead compound. The capacity of substituted hydrazines to profile, discover and inhibit diverse cofactor-dependent enzymes enables cell and tissue imaging and makes this platform useful for enzyme and drug discovery

    Analysing Change: Complex Rather than Dialectical?

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This article offers a discussion of dialectics from a complexity perspective. Dialectics is a term much utilized but infrequently defined. This article suggests that a spectrum of ideas exist concerning understandings of dialectics. We are particularly critical of Hegelian dialectics, which we see as anthropocentric and teleological. While Marxist approaches to dialectics, in the form of historical materialism, marked a break from the idealist elements of Hegelian dialectics, they retained traces of this approach. The article offers a partial discussion of essential elements of dialectics, which we consider to be the analysis of change, the centrality of contradiction, and the methodology of abstraction. Points of overlap with complexity thinking are highlighted, together with those points where complexity thinking and dialectical approaches diverge. We conclude with some suggestions as to how complexity thinking might contribute to a development of dialectical approaches

    Expansion of Agriculture in Northern Cold-Climate Regions: A Cross-Sectoral Perspective on Opportunities and Challenges

    Get PDF
    Agriculture in the boreal and Arctic regions is perceived as marginal, low intensity and inadequate to satisfy the needs of local communities, but another perspective is that northern agriculture has untapped potential to increase the local supply of food and even contribute to the global food system. Policies across northern jurisdictions target the expansion and intensification of agriculture, contextualized for the diverse social settings and market foci in the north. However, the rapid pace of climate change means that traditional methods of adapting cropping systems and developing infrastructure and regulations for this region cannot keep up with climate change impacts. Moreover, the anticipated conversion of northern cold-climate natural lands to agriculture risks a loss of up to 76% of the carbon stored in vegetation and soils, leading to further environmental impacts. The sustainable development of northern agriculture requires local solutions supported by locally relevant policies. There is an obvious need for the rapid development of a transdisciplinary, cross-jurisdictional, long-term knowledge development, and dissemination program to best serve food needs and an agricultural economy in the boreal and Arctic regions while minimizing the risks to global climate, northern ecosystems and communities

    Terfenadine induces apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms

    Get PDF
    Previously we found that terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. In this report, focusing our attention on the apoptotic mechanisms activated by terfenadine, we show that this drug can potentially activate distinct intrinsic signaling pathways depending on culture conditions. Serum-deprived conditions enhance the cytotoxic effect of terfenadine and caspase-4 and -2 are activated upstream of caspase-9. Moreover, although we found an increase in ROS levels, the apoptosis was ROS independent. Conversely, terfenadine treatment in complete medium induced ROS-dependent apoptosis. Caspase-4, -2, and -9 were simultaneously activated and p73 and Noxa induction were involved. ROS inhibition prevented p73 and Noxa expression but not p53 and p21 expression, suggesting a role for Noxa in p53-independent apoptosis in melanoma cells. Finally, we found that terfenadine induced autophagy, that can promote apoptosis. These findings demonstrate the great potential of terfenadine to kill melanoma cells through different cellular signaling pathways and could contribute to define new therapeutic strategies in melanoma
    corecore