31 research outputs found

    All-optical flip-flops using electrically pumped microdisk lasers integrated on silicon

    Get PDF
    We demonstrate flip-flop operation using the directional bistability in ultra-small microdisks (7.5 mu m diameter) heterogeneously bonded on a silicon chip. The pulse energies are only 1.8 fJ and the bias current is 3.5 mA

    Transmission of pillar-based photonic crystal waveguides in InP technology

    Get PDF
    Waveguides based on line defects in pillar photonic crystals have been fabricated in InP/InGaAsP/InP technology. Transmission measurements of different line defects are reported. The results can be explained by comparison with two-dimensional band diagram simulations. The losses increase substantially at mode crossings and in the slow light regime. The agreement with the band diagrams implies a good control on the dimensions of the fabricated features, which is an important step in the actual application of these devices in photonic integrated circuit

    Extraction of Dzyaloshinksii-Moriya interaction from propagating spin waves validated

    Full text link
    The interfacial Dzyaloshinksii-Moriya interaction (iDMI) is of great interest in thin-film magnetism because of its ability to stabilize chiral spin textures. It can be quantified by investigating the frequency non-reciprocity of oppositely propagating spin waves. However, as the iDMI is an interface interaction the relative effect reduces when the films become thicker making quantification more difficult. Here, we utilize all-electrical Propagating Spin Wave Spectroscopy (PSWS) to disentangle multiple contributions to spin wave frequency non-reciprocity to determine the iDMI. This is done by investigating non-reciprocities across a wide range of magnetic layer thicknesses (from 4 to 26 nm) in Pt/Co/Ir, Pt/Co/Pt, and Ir/Co/Pt stacks. We find the expected sign change in the iDMI when inverting the stack order, and a negligible iDMI for the symmetric Pt/Co/Pt. We additionally extract a difference in surface anisotropies and find a large contribution due to the formation of different crystalline phases of the Co, which is corroborated using nuclear magnetic resonance and high-resolution transmission-electron-microscopy measurements. These insights will open up new avenues to investigate, quantify and disentangle the fundamental mechanisms governing the iDMI, and pave a way towards engineered large spin-wave non-reciprocities for magnonic applications.Comment: 12 pages, 2 figure

    Short Polarization Filter in Pillar-Based Photonic Crystals

    Full text link
    corecore