33 research outputs found

    Structures of MauG in complex with quinol and quinone MADH

    Get PDF
    MauG has been cocrystallized with methylamine dehydrogenase (MADH) with its TTQ cofactor in the o-quinol (TTQ(OQ)) and quinone (TTQ(OX)) forms and the structures of the resulting complexes have been solved. The TTQ(OQ) structure crystallized in either space group P2(1) or C2, while the TTQ(OX) structure crystallized in space group P1. The previously solved structure of MauG in complex with MADH bearing an incompletely formed TTQ cofactor (preMADH) also crystallized in space group P1, although with different unit-cell parameters. Despite the changes in crystal form, the structures are virtually identical, with only very minor changes at the protein-protein interface. The relevance of these structures with respect to the measured changes in affinity between MauG and various forms of MADH is discussed

    Structural, NMR Spectroscopic and Computational Investigation of Hemin Loading in the Hemophore HasAp from Pseudomonas aeruginosa

    Get PDF
    Heat shock protein 90 (Hsp90) inhibition by modulation of the N-or C-terminal binding site has become an attractive strategy for the development of anti-cancer chemotherapeutics. The first Hsp90 C-terminus inhibitor, novobiocin, manifested a relatively high IC50 value of ~700 μM. Therefore, investigation of the novobiocin scaffold has led to analogs with improved antiproliferative activity (nanomolar concentrations) against several cancer cell lines. During these studies, novobiocin analogs that do not inhibit Hsp90 were identified; however, these analogs demonstrated potent anti-proliferative activity. Compound 2, a novobiocin analog, was identified as a MAPK pathway signaling disruptor that lacked Hsp90 inhibitory activity. In addition, structural modifications of compound 2 were identified that segregated Hsp90 inhibition from MAPK signaling disruption. These studies indicate that compound 2 represents a novel scaffold for disruption of MAPK pathway signaling and may serve as a useful structure for the generation of new anti-cancer agents

    Leadership, staffing and quality of care in nursing homes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leadership and staffing are recognised as important factors for quality of care. This study examines the effects of ward leaders' task- and relationship-oriented leadership styles, staffing levels, ratio of registered nurses and ratio of unlicensed staff on three independent measures of quality of care.</p> <p>Methods</p> <p>A cross-sectional survey of forty nursing home wards throughout Norway was used to collect the data. Five sources of data were utilised: self-report questionnaires to 444 employees, interviews with and questionnaires to 13 nursing home directors and 40 ward managers, telephone interviews with 378 relatives and 900 hours of field observations. Separate multi-level analyses were conducted for quality of care assessed by relatives, staff and field observations respectively.</p> <p>Results</p> <p>Task-oriented leadership style had a significant positive relationship with two of the three quality of care indexes. In contrast, relationship-oriented leadership style was not significantly related to any of the indexes. The lack of significant effect for relationship-oriented leadership style was due to a strong correlation between the two leadership styles (<it>r </it>= 0.78). Staffing levels and ratio of registered nurses were not significantly related to any of the quality of care indexes. The ratio of unlicensed staff, however, showed a significant negative relationship to quality as assessed by relatives and field observations, but not to quality as assessed by staff.</p> <p>Conclusions</p> <p>Leaders in nursing homes should focus on active leadership and particularly task-oriented behaviour like structure, coordination, clarifying of staff roles and monitoring of operations to increase quality of care. Furthermore, nursing homes should minimize use of unlicensed staff and address factors related to high ratios of unlicensed staff, like low staff stability. The study indicates, however, that the relationship between staffing levels, ratio of registered nurses and quality of care is complex. Increasing staffing levels or the ratio of registered nurses alone is not likely sufficient for increasing quality of care.</p

    Structure and Function of the Zinc Binding Protein ZrgA from <i>Vibrio cholerae</i>

    No full text
    ATP binding cassette (ABC) transporters are the primary means by which bacteria acquire trace elements from the environment. They rely on solute binding proteins (SBPs) to bind the relevant substrate and deliver it to the integral membrane permease for ATP-powered import into the cytoplasm. SBPs of cluster A-I are known to facilitate the transport of essential metals zinc, manganese, and iron, and many have been characterized to date. A group of ABC transporter operons dubbed zinc-regulated genes (zrg) have recently been shown to transport zinc with putative SBPs (zrgA) bearing no homology to the classical cluster A-I family, and a recent crystal structure of a representative protein from Pseudomonas aeruginosa shows no structural similarity to classical SBPs. Thus, the ZrgA proteins appear to represent a newly discovered family of zinc SBPs widespread among Gram-negative bacteria, including human pathogens. Here, we have determined the crystal structure of ZrgA from Vibrio cholerae and characterized its zinc binding in vitro and function in vivo. We also assessed the role of a histidine-rich sequence that appears to be a hallmark of ZrgA proteins that is particularly long in V. cholerae ZrgA. The results show that the zrgA gene is critical to the function of the operon, consistent with a function as an SBP in this system. Further, the His-rich region is not essential to the function of ZrgA, but it does provide additional zinc binding sites in vitro. The structure and zinc binding data for ZrgA reveal interesting differences between it and its homologue from P. aeruginosa, illustrating diversity within this little-studied protein family

    Oxidative Damage In Maug: Implications For The Control Of High-Valent Iron Species And Radical Propagation Pathways

    No full text
    The di-heme enzyme MauG catalyzes the oxidative biosynthesis of a tryptophan tryptophylquinone cofactor on a precursor of the enzyme methylamine dehydrogenase (preMADH). Reaction of H2O2 with the diferric form of MauG, or reaction of O2 with diferrous MauG, forms the catalytic intermediate known as bis-Fe(IV), which acts as the key oxidant during turnover. The site of substrate oxidation is more than 40 Å from the high-spin heme iron where H2O2 initially reacts, and catalysis relies on radical hopping through an interfacial residue, Trp199 of MauG. In the absence of preMADH, the bis-Fe(IV) intermediate is remarkably stable, but repeated exposure to H2O2 results in suicide inactivation. Using mass spectrometry, we show that this process involves the oxidation of three Met residues (108, 114, and 116) near the high-spin heme through ancillary electron transfer pathways engaged in the absence of substrate. The mutation of a conserved Pro107 in the distal pocket of the high-spin heme results in a dramatic increase in the level of oxidation of these Met residues. These results illustrate structural mechanisms by which MauG controls reaction with its high-valent heme cofactor and limits uncontrolled oxidation of protein residues and loss of catalytic activity. The conservation of Met residues near the high-spin heme among MauG homologues from different organisms suggests that eventual deactivation of MauG may function in a biological context. That is, methionine oxidation may represent a protective mechanism that prevents the generation of reactive oxygen species by MauG in the absence of preMADH. © 2013 American Chemical Society
    corecore