3 research outputs found

    Anti-Diabetic Potential of Noni: The Yin and the Yang

    No full text
    Escalating trends of chronic diseases such as type-2 diabetes (T2D) have sparked a renewed interest in complementary and alternative medicine, including herbal products. Morinda citrifolia (noni) has been used for centuries by Pacific Islanders to treat various ailments. Commercial noni fruit juice has been marketed as a dietary supplement since 1996. In 2003, the European Commission approved Tahitian noni juice as a novel food by the Health and Consumer Protection Directorate General. Among noni’s several health benefits, others and we have demonstrated the anti-diabetic effects of fermented noni fruit juice in animal models. Unfortunately, noni’s exciting journey from Polynesian medicine to the research bench does not reach its final destination of successful clinical outcomes when translated into commercial products. Noni products are perceived to be safe due to their “natural” origin. However, inadequate evidence regarding bioactive compounds, molecular targets, mechanism of action, pharmacokinetics, long-term safety, effective dosages, and/or unanticipated side effects are major roadblocks to successful translation “from bench side to bedside”. In this review we summarize the anti-diabetic potential of noni, differences between traditional and modern use of noni, along with beneficial clinical studies of noni products and challenges in clinical translation of noni’s health benefits

    Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle

    Get PDF
    The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive setup of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SPAMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10% ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mgm-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-toprimary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62% after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42% (primary) to 57% (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.publishedVersionPeer reviewe
    corecore