30 research outputs found

    Revisiting rho 1 Cancri e: A New Mass Determination Of The Transiting super-Earth

    Get PDF
    We present a mass determination for the transiting super-Earth rho 1 Cancri e based on nearly 700 precise radial velocity (RV) measurements. This extensive RV data set consists of data collected by the McDonald Observatory planet search and published data from Lick and Keck observatories (Fischer et al. 2008). We obtained 212 RV measurements with the Tull Coude Spectrograph at the Harlan J. Smith 2.7 m Telescope and combined them with a new Doppler reduction of the 131 spectra that we have taken in 2003-2004 with the High-Resolution-Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) for the original discovery of rho 1 Cancri e. Using this large data set we obtain a 5-planet Keplerian orbital solution for the system and measure an RV semi-amplitude of K = 6.29 +/- 0.21 m/s for rho 1 Cnc e and determine a mass of 8.37 +/- 0.38 M_Earth. The uncertainty in mass is thus less than 5%. This planet was previously found to transit its parent star (Winn et al. 2011, Demory et al. 2011), which allowed them to estimate its radius. Combined with the latest radius estimate from Gillon et al. (2012), we obtain a mean density of rho = 4.50 +/- 0.20 g/cm^3. The location of rho 1 Cnc e in the mass-radius diagram suggests that the planet contains a significant amount of volitales, possibly a water-rich envelope surrounding a rocky core.Comment: 16 pages, 5 figures, accepted for publication in the Astrophysical Journal (the 300+ RV measurements will be published as online tables or can be obtained from the author

    A Second Giant Planet in 3:2 Mean-Motion Resonance in the HD 204313 System

    Get PDF
    We present 8 years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (M sin i = 3.5 M_J) on a ~1900-day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Segransan et al. (2010), we discover an outer Jovian (M sin i = 1.6 M_J) planet with P ~ 2800 days. Our orbital fit suggests the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis, and verify the planets must be in resonance.Comment: Accepted for publication in Ap

    The McDonald Observatory Planet Search: New Long-Period Giant Planets, and Two Interacting Jupiters in the HD 155358 System

    Get PDF
    We present high-precision radial velocity (RV) observations of four solar-type (F7-G5) stars - HD 79498, HD 155358, HD 197037, and HD 220773 - taken as part of the McDonald Observatory Planet Search Program. For each of these stars, we see evidence of Keplerian motion caused by the presence of one or more gas giant planets in long-period orbits. We derive orbital parameters for each system, and note the properties (composition, activity, etc.) of the host stars. While we have previously announced the two-gas-giant HD 155358 system, we now report a shorter period for planet c. This new period is consistent with the planets being trapped in mutual 2:1 mean-motion resonance. We therefore perform an in-depth stability analysis, placing additional constraints on the orbital parameters of the planets. These results demonstrate the excellent long-term RV stability of the spectrometers on both the Harlan J. Smith 2.7 m telescope and the Hobby-Eberly telescope.Comment: 38 pages, 10 figures, 6 tables. Accepted for publication in Ap

    A 12-year activity cycle for the nearby planet host star HD 219134

    Get PDF
    The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. and Vogt et al. to host several planets, the innermost of which is transiting. We present 27 years of radial velocity (RV) observations of this star from the McDonald Observatory Planet Search program, and 19 years of stellar activity data. We detect a long-period activity cycle measured in the Ca II SHK index, with a period of 4230±100 days (11.7 years), very similar to the 11 year solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al., suggesting that this RV signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our RVs allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer period planets in the system, excluding to 1s objects with M sin i > 0.36MJ at 12 years (corresponding to the orbital period of Jupiter) and M sin i > 0.72MJ at a period of 16.4 years (assuming a circular orbit for an outer companion)

    Two New Long-Period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-Period Radial Velocity Signals Related to Stellar Activity Cycles

    Get PDF
    We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ^1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 M_(Jup) and an orbital semimajor axis of 5.2 AU. The giant planet ψ^1 Dra Bb has a minimum mass of 1.5 M_(Jup) and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ^1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter–Saturn pair. The primary of the binary star system, ψ^1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet

    KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary

    Get PDF
    Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 5 degrees.5) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio greater than or similar to 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.NASA, Science Mission DirectorateNASA NNX08AR14GEuropean Research Council under the European Community 227224W.M. Keck FoundationMcDonald Observator

    Radial Velocity Discovery of an Eccentric Jovian World Orbiting at 18 au

    Get PDF
    Based on two decades of radial velocity (RV) observations using Keck/High Resolution Echelle Spectrometer (HIRES) and McDonald/Tull, and more recent observations using the Automated Planet Finder, we found that the nearby star HR 5183 (HD 120066) hosts a 3 minimum mass planet with an orbital period of yr. The orbit is highly eccentric (e ≃ 0.84), shuttling the planet from within the orbit of Jupiter to beyond the orbit of Neptune. Our careful survey design enabled high cadence observations before, during, and after the planet\u27s periastron passage, yielding precise orbital parameter constraints. We searched for stellar or planetary companions that could have excited the planet\u27s eccentricity, but found no candidates, potentially implying that the perturber was ejected from the system. We did identify a bound stellar companion more than 15,000 au from the primary, but reasoned that it is currently too widely separated to have an appreciable effect on HR 5183 b. Because HR 5183 b\u27s wide orbit takes it more than 30 au (1\u27\u27) from its star, we also explored the potential of complimentary studies with direct imaging or stellar astrometry. We found that a Gaia detection is very likely, and that imaging at 10 μm is a promising avenue. This discovery highlights the value of long-baseline RV surveys for discovering and characterizing long-period, eccentric Jovian planets. This population may offer important insights into the dynamical evolution of planetary systems containing multiple massive planets
    corecore