38 research outputs found

    The Lectin-like Receptor KLRE1 Inhibits Natural Killer Cell Cytotoxicity

    Get PDF
    We report the cloning and functional characterization in the mouse and the rat of a novel natural killer (NK) cell receptor termed KLRE1. The receptor is a type II transmembrane protein with a COOH-terminal lectin-like domain, and constitutes a novel KLR family. Rat Klre1 was mapped to the NK gene complex. By Northern blot and flow cytometry using newly generated monoclonal antibodies, KLRE1 was shown to be expressed by NK cells and a subpopulation of CD3+ cells, with pronounced interstrain variation. Western blot analysis indicated that KLRE1 can be expressed on the NK cell surface as a disulphide-linked dimer. The predicted proteins do not contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) or a positively charged amino acid in the transmembrane domain. However, in a redirected lysis assay, the presence of whole IgG, but not of F(ab′)2 fragments of a monoclonal anti-KLRE1 antibody inhibited lysis of Fc-receptor bearing tumor target cells. Moreover, the tyrosine phosphatase SHP-1 was coimmunoprecipitated with KLRE1 from pervanadate-treated interleukin 2–activated NK cells. Together, our results indicate that KLRE1 may form a functional heterodimer with an as yet unidentified ITIM-bearing partner that recruits SHP-1 to generate an inhibitory receptor complex

    Innate lymphoid cell characterization in the rat and their correlation to gut commensal microbes.

    Get PDF
    Innate lymphoid cells (ILCs) are important for tissue immune homeostasis, and are thoroughly characterized in mice and humans. Here, we have performed in-depth characterization of rat ILCs. Rat ILCs were identified based on differential expression of transcription factors and lack of lineage markers. ILC3s represented the major ILC population of the small intestine, while ILC2s were infrequent but most prominent in liver and adipose tissue. Two major subsets of group 1 ILCs were defined. Lineage- T-bet+ Eomes+ cells were identified as conventional NK cells, while lineage- T-bet+ Eomes- cells were identified as the probable rat counterpart of ILC1s based on their selective expression of the ILC marker CD200R. Rat ILC1s were particularly abundant in liver and intestinal tissues, and were functionally similar to NK cells. Single-cell transcriptomics of spleen and liver cells confirmed the main division of NK cells and ILC1-like cells, and demonstrated Granzyme A as an additional ILC1 marker. We further report differential distributions of NK cells and ILCs along the small and large intestines, and the association of certain bacterial taxa to frequencies of ILCs. In conclusion, we provide a framework for future studies of ILCs in diverse rat experimental models, and novel data on the potential interplay between commensals and intestinal ILCs

    The complete inventory of receptors encoded by the rat natural killer cell gene complex

    Get PDF
    The natural killer cell gene complex (NKC) encodes receptors belonging to the C-type lectin superfamily expressed primarily by NK cells and other leukocytes. In the rat, the chromosomal region that starts with the Nkrp1a locus and ends with the Ly49i8 locus is predicted to contain 67 group V C-type lectin superfamily genes, making it one of the largest congregation of paralogous genes in vertebrates. Based on physical proximity and phylogenetic relationships between these genes, the rat NKC can be divided into four major parts. We have previously reported the cDNA cloning of the majority of the genes belonging to the centromeric Nkrp1/Clr cluster and the two telomeric groups, the Klre1–Klri2 and the Ly49 clusters. Here, we close the gap between the Nkrp1/Clr and the Klre1–Klri2 clusters by presenting the cDNA cloning and transcription patterns of eight genes spanning from Cd69 to Dectin1, including the novel Clec2m gene. The definition, organization, and evolution of the rat NKC are discussed

    Paired opposing leukocyte receptors recognizing rapidly evolving ligands are subject to homogenization of their ligand binding domains

    Get PDF
    Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors

    Development and Function of CD94-Deficient Natural Killer Cells

    Get PDF
    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions

    A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    Get PDF
    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals

    B7H6 is a functional ligand for NKp30 in rat and cattle and determines NKp30 reactivity toward human cancer cell lines

    Get PDF
    NK cells kill cancer cells and infected cells upon activation by cell surface receptors. Human NKp30 is an activating receptor expressed by all mature NK cells. The B7 family member B7H6 has been identified as one ligand for NKp30. Several alternative ligands have also been reported, and the field remains unsettled. To this end, we have identified full‐length functional B7H6 orthologs in rat and cattle, demonstrated by phylogenetic analysis and transfection experiments. In cell–cell contact‐dependent assays, chimeric NKp30 reporter cells responded strongly to B7H6 in rat and cattle. Likewise, rat NKp30 expressing target cells induced strong activation of B7H6 reporter cells. Together, these observations demonstrate that B7H6 is conserved as a functional ligand for NKp30 in mammalian species separated by more than 100 million years of evolution. B7H6 and NKp30 are pseudogenes in laboratory mice. The rat thus represents an attractive experimental animal model to study the NKp30‐B7H6 interaction in vivo. B7H6 was widely expressed among human cancer cell lines, and the expression level correlated strongly with the activation of human NKp30 reporter cells. Furthermore, siRNA knockdown of B7H6 abolished NKp30 reporter responses, suggesting that B7H6 is the major functionally relevant expressed ligand for NKp30 on these cancer cell lines.B7H6 is a functional ligand for NKp30 in rat and cattle and determines NKp30 reactivity toward human cancer cell linesacceptedVersio

    Allospecific recognition of hemic cells in vitro by natural killer cells from athymic rats: evidence that allodeterminants coded for by single major histocompatibility complex haplotypes are recognized

    No full text
    We have previously shown that large granular lymphocyte (LGL)-enriched cell populations have the capacity to spontaneously recognize and kill allogeneic small lymphocytes and bone marrow cells (BMC) in vitro in certain strain combinations of rats. Here, we have studied the alloreactivity of natural killer (NK) cells from PVG nude (RT1c) rats against a panel of major histocompatibility complex (MHC) incompatible hemic cells. Both lymphocytes and BMC from the AO (RT1u), DA (RT1a), BN (RT1n) as well as the MHC-congenic PVG-RT1u (RT1u) rat strains were efficiently killed in vitro, whereas cells from syngeneic PVG rats were spared. The structures recognized on lymphocytes and BMC were probably similar since the two cell populations inhibited each other in cross-competition experiments. A number of features aligned the alloreactive effector cells with NK cells and not T cells. (a) Only about 5% of the effector cells from nude spleens expressed the T cell antigens CD3, CD5 or T cell receptor (TcR) α/β whereas > 50% of the cells expressed markers present on NK cells (CD2, CD8, OX52 and the rat NK cell-specific marker NKR-P1 recognized by the monoclonal antibody 3.2.3). (b) The alloreactive cells were granular since pretreatment of nude spleen cells with the lysosomotropic agent L-leucine methyl ester which eliminated LGL, simultaneously abolished the cytolysis of both allogeneic lymphocytes and YAC-1 tumor cells. (c) Nude spleen cells stimulated with human recombinant interleukin 2 for 1 week in vitro generated large granular proliferating cells which were CD3−. CD5−, TcR α/β−, but > 95% 3.2.3+. These cells efficiently killed allogeneic hemic cells from the same rat strains as did freshly isolated effector cells. (d) The cytolysis of allogeneic hemic cells could effectively be inhibited with unlabelled NK-sensitive (YAC-1 and K-562), but not NK-resistant (Roser leukemia) tumor cells. Cross-competition studies showed that PVG nude NK cells discriminated between AO, BN and DA BMC, suggesting that different alloantigens were positively recognized by subsets of NK cells. The mode of inheritance of the allodeterminant specifically recognized on AO BMC was investigated in crosses and backcrosses between AO and BN or DA rats. A gene dosage effect was observed in that this determinant was expressed at a slightly reduced level in F1 hybrids. Cells from the progeny of a BN × (BN × AO) or DA × (DA × AO) backcross used as inhibitor cells showed that the inhibition of killing of AO target cells co-segregated completely with the expression of RT1u class I molecules on the inhibitor cells in 22 rats. Taken together, these results have shown that NK cells can recognize allogeneic cells in a specific manner and that one MHC haplotype is sufficient for the expression of at least one of the alloantigens recognized
    corecore