80 research outputs found

    Scaling Analysis of Fluctuating Strength Function

    Get PDF
    We propose a new method to analyze fluctuations in the strength function phenomena in highly excited nuclei. Extending the method of multifractal analysis to the cases where the strength fluctuations do not obey power scaling laws, we introduce a new measure of fluctuation, called the local scaling dimension, which characterizes scaling behavior of the strength fluctuation as a function of energy bin width subdividing the strength function. We discuss properties of the new measure by applying it to a model system which simulates the doorway damping mechanism of giant resonances. It is found that the local scaling dimension characterizes well fluctuations and their energy scales of fine structures in the strength function associated with the damped collective motions.Comment: 22 pages with 9 figures; submitted to Phys. Rev.

    Field-theoretical approach to particle oscillations in absorbing matter

    Get PDF
    The abab oscillations in absorbing matter are considered. The standard model based on optical potential does not describe the total abab transition probability as well as the channel corresponding to absorption of the bb-particle. We calculate directly the off-diagonal matrix element in the framework of field-theoretical approach. Contrary to one-particle model, the final state absorption does not tend to suppress the channels mentioned above or, similarly, calculation with hermitian Hamiltonian leads to increase the corresponding values. The model reproduces all the results on the particle oscillations, however it is oriented to the description of the above-mentioned channels. Also we touch on the problem of infrared singularities. The approach under study is infrared-free.Comment: 27 pages, 8 figure

    Statistics of Coulomb blockade peak spacings for a partially open dot

    Full text link
    We show that randomness of the electron wave functions in a quantum dot contributes to the fluctuations of the positions of the conductance peaks. This contribution grows with the conductance of the junctions connecting the dot to the leads. It becomes comparable with the fluctuations coming from the randomness of the single particle spectrum in the dot while the Coulomb blockade peaks are still well-defined. In addition, the fluctuations of the peak spacings are correlated with the fluctuations of the conductance peak heights.Comment: 13 pages, 1 figur

    On the pion-nucleon coupling constant

    Full text link
    In view of persisting misunderstanding about the determination of the pion-nucleon coupling constants in the Nijmegen multienergy partial-wave analyses of pp, np, and pbar-p scattering data, we present additional information which may clarify several points of discussion. We comment on several recent papers addressing the issue of the pion-nucleon coupling constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0

    Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data

    Get PDF
    The pi-N s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the pionic deuterium x-ray data using a non-relativistic approach in which the pi-N interaction is simulated by a short-ranged potential. The pi-d scattering length has been calculated exactly by solving the Faddeev equations and also by using a static approximation. It has been shown that the same very accurate static formula for pi-d scattering length can be derived (i) from a set of boundary conditions; (ii) by a reduction of Faddeev equations; and (iii) through a summation of Feynman diagrams. By imposing the requirement that the pi-d scattering length, resulting from Faddeev-type calculation, be in agreement with pionic deuterium data, we obtain bounds on the pi-N scattering lengths. The dominant source of uncertainty on the deduced values of the pi-N scattering lengths are the experimental errors in the pionic hydrogen data.Comment: RevTeX, 20 pages,4 PostScript figure

    Elastic Scattering of Pions From the Three-nucleon System

    Get PDF
    We examine the scattering of charged pions from the trinucleon system at a pion energy of 180 MeV. The motivation for this study is the structure seen in the experimental angular distribution of back-angle scattering for pi+ 3He and pi- 3H but for neither pi- 3He nor pi+ 3H. We consider the addition of a double spin flip term to an optical model treatment and find that, though the contribution of this term is non-negligible at large angles for pi+ 3He and pi- 3H, it does not reproduce the structure seen in the experiment.Comment: 15 pages + 5 figure

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    Towards a high precision calculation for the pion-nucleus scattering lengths

    Get PDF
    We calculate the leading isospin conserving few-nucleon contributions to pion scattering on 2^2H, 3^3He, and 4^4He. We demonstrate that the strong contributions to the pion-nucleus scattering lengths can be controlled theoretically to an accuracy of a few percent for isoscalar nuclei and of 10% for isovector nuclei. In particular, we find the π\pi-3^3He scattering length to be (62±4±7)×103mπ1(62 \pm 4\pm 7)\times 10^{-3} m_{\pi}^{-1} where the uncertainties are due to ambiguities in the π\pi-N scattering lengths and few-nucleon effects, respectively. To establish this accuracy we need to identify a suitable power counting for pion-nucleus scattering. For this purpose we study the dependence of the two-nucleon contributions to the scattering length on the binding energy of 2^2H. Furthermore, we investigate the relative size of the leading two-, three-, and four-nucleon contributions. For the numerical evaluation of the pertinent integrals, aMonte Carlo method suitable for momentum space is devised. Our results show that in general the power counting suggested by Weinberg is capable to properly predict the relative importance of NN-nucleon operators, however, it fails to capture the relative strength of NN- and (N+1)(N+1)-nucleon operators, where we find a suppression by a factor of 5 compared to the predicted factor of 50. The relevance for the extraction of the isoscalar π\pi-N scattering length from pionic 2^2H and 4^4He is discussed. As a side result, we show that beyond the calculation of the π\pi-2^2H scattering length is already beyond the range of applicability of heavy pion effective field theory.Comment: 24 pages, 14 figures, 10 table

    Proton-proton scattering above 3 GeV/c

    Get PDF
    A large set of data on proton-proton differential cross sections, analyzing powers and the double polarization parameter A_NN is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the rho, omega, f_2, and a_2 trajectories and single Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.Comment: 16 pages, 19 figures; revised version accepted for publication in EPJ

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix
    corecore