6 research outputs found

    Towards continuously programmable networks

    Get PDF
    While programmability has been a feature of network devices for a long time, the past decade has seen significant enhancement of programming capability for network functions and nodes, spearheaded by the ongoing trend towards softwarization and cloudification. In his context, new design principles and technology enablers are introduced (Section 7.2) which reside at: (i) service/application provisioning level, (ii) network and resource management level, as well as (iii) network deployment and connectivity level

    D2.2 Draft Overall 5G RAN Design

    Full text link
    This deliverable provides the consolidated preliminary view of the METIS-II partners on the 5 th generation (5G) radio access network (RAN) design at a mid-point of the project. The overall 5G RAN is envisaged to operate over a wide range of spectrum bands comprising of heterogeneous spectrum usage scenarios. More precisely, the 5G air interface (AI) is expected to be composed of multiple so-called AI variants (AIVs), which include evolved legacy technology such as Long Term Evolution Advanced (LTE-A) as well as novel AIVs, which may be tailored to particular services or frequency bands.Arnold, P.; Bayer, N.; Belschner, J.; Rosowski, T.; Zimmermann, G.; Ericson, M.; Da Silva, IL.... (2016). D2.2 Draft Overall 5G RAN Design. https://doi.org/10.13140/RG.2.2.17831.1424

    Towards continuously programmable networks

    No full text
    <p>While programmability has been a feature of network devices for a long time, the past decade has seen significant enhancement of programming capability for network functions and nodes, spearheaded by the ongoing trend towards softwarization and cloudification. In his context, new design principles and technology enablers are introduced (Section 7.2) which reside2 at: (i) service/application provisioning level, (ii) network and resource management level, as well as (iii) network deployment and connectivity level.</p&gt

    6G vision, value, use cases and technologies from European 6G Flagship project Hexa-X

    No full text
    Abstract While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6 th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed

    Hexa-X:the European 6G flagship project

    No full text
    Abstract Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks
    corecore