25 research outputs found

    Increasing the understanding of nutrient-transport capacity of the ovine placentome

    Get PDF
    Placental nutrient transport capacity influences fetal growth and development; however, it is affected by environmental factors, which are poorly understood. The objective of this study was to understand the impact of the ovine placentome morphological subtype, tissue type, and maternal parenteral supplementation of arginine mono-hydrochloride (Arg) on nutrient transport capacity using a gene expression approach. Placentomal tissues of types A, B, and C morphologic placentome subtypes were derived from 20 twin-bearing ewes, which were infused thrice daily with Arg (n = 9) or saline (Ctrl, n = 11) from 100 to 140 days of gestation. Samples were collected at day 140 of gestation. Expression of 31 genes involved in placental nutrient transport and function was investigated. Differential expression of specific amino acid transporter genes was found in the subtypes, suggesting a potential adaptive response to increase the transport capacity. Placentomal tissues differed in gene expression, highlighting differential transport capacity. Supplementation with Arg was associated with differential expressions of genes involved in amino acid transport and angiogenesis, suggesting a greater nutrient transport capacity. Collectively, these results indicate that the morphological subtype, tissue type, and maternal Arg supplementation can influence placental gene expression, which may be an adaptive response to alter the transport capacity to support fetal growth in sheep.</p

    Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    Get PDF
    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction

    The Rotterdam Study: 2012 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over a 1,000 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    Spinocerebellar ataxias Ataxias espinocerebelares

    No full text
    Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of neurodegenerative diseases characterized by progressive cerebellar ataxia in association with some or all of the following conditions: ophthalmoplegia, pyramidal signs, movement disorders, pigmentary retinopathy, peripheral neuropathy, cognitive dysfunction and dementia. OBJECTIVE: To carry out a clinical and genetic review of the main types of SCA. METHOD: The review was based on a search of the PUBMED and OMIM databases. RESULTS: Thirty types of SCAs are currently known, and 16 genes associated with the disease have been identified. The most common types are SCA type 3, or Machado-Joseph disease, SCA type 10 and SCA types 7, 2, 1 and 6. SCAs are genotypically and phenotypically very heterogeneous. A clinical algorithm can be used to distinguish between the different types of SCAs. CONCLUSIONS: Detailed clinical neurological examination of SCA patients can be of great help when assessing them, and the information thus gained can be used in an algorithm to screen patients before molecular tests to investigate the correct etiology of the disease are requested.<br>As ataxias espinocerebelares (AECs) compreendem um grupo heterogeneo de enfermidades neurodegenerativas, que se caracterizam pela presença de ataxia cerebelar progressiva, associada de forma variada com oftalmoplegia, sinais piramidais, distúrbios do movimento, retinopatia pigmentar, neuropatia periférica, disfunção cognitiva e demência. OBJETIVO: Realizar uma revisão clínico-genética dos principais tipos de AECs. MÉTODO: A revisão foi realizada através da pesquisa pelo sistema do PUBMED e do OMIM. RESULTADOS: Na atualidade existem cerca de 30 tipos de AECs, com a descoberta de 16 genes. Os tipos mais comuns são a AEC tipo 3, ou doença de Machado-Joseph, a AEC tipo 10, e as AECs tipo 7, 2 1, e 6. As AECs apresentam grande heterogeneidade genotípica e fenotípica. Pode-se utilizar um algoritmo clínico para a pesquisa dos diferentes tipos de AECs. CONCLUSÕES: O exame clínico neurológico minucioso nos pacientes com AECs pode auxiliar sobremaneira na avaliação clínica destes pacientes, utilizando-se desta forma de um algoritmo, com os dados clínicos, que pode servir como um instrumento de triagem para a solicitação dos testes de genética molecular, para a correta investigação etiológica
    corecore