32 research outputs found

    Concordance between In Vitro and In Vivo Relative Toxic Potencies of Diesel Exhaust Particles from Different Biodiesel Blends

    No full text
    Diesel exhaust particles (DEPs) contribute to air pollution exposure-related adverse health impacts. Here, we examined in vitro, and in vivo toxicities of DEPs from a Caterpillar C11 heavy-duty diesel engine emissions using ultra-low-sulfur diesel (ULSD) and biodiesel blends (20% v/v) of canola (B20C), soy (B20S), or tallow–waste fry oil (B20T) in ULSD. The in vitro effects of DEPs (DEPULSD, DEPB20C, DEPB20S, and DEPB20T) in exposed mouse monocyte/macrophage cells (J774A.1) were examined by analyzing the cellular cytotoxicity endpoints (CTB, LDH, and ATP) and secreted proteins. The in vivo effects were assessed in BALB/c mice (n = 6/group) exposed to DEPs (250 µg), carbon black (CB), or saline via intratracheal instillation 24 h post-exposure. Bronchoalveolar lavage fluid (BALF) cell counts, cytokines, lung/heart mRNA, and plasma markers were examined. In vitro cytotoxic potencies (e.g., ATP) and secreted TNF-α were positively correlated (p ULSD and DEPB20C appeared to be more potent compared to DEPB20S and DEPB20T. These findings suggested that biodiesel blend-derived DEP potencies can be influenced by biodiesel sources, and inflammatory process- was one of the potential underlying toxicity mechanisms. These observations were consistent across in vitro and in vivo exposures, and this work adds value to the health risk analysis of cleaner fuel alternatives

    Oxidative and nitrative stress-related changes in human lens epithelial cells following exposure to X-rays

    No full text
    Purpose: There is limited understanding of the mechanistic effects of ionizing radiation (IR) exposure in cataract formation. In this study, we explored the effects of IR on reactive oxygen/nitrogen species (ROS and RNS) generation in human lens epithelial (HLE) cells as an early key event to long-term damage. Materials and methods: HLE cell-line was exposed to X-rays at varied doses (0–5 Gy) and dose-rates. Cell lysates and supernatants were collected 20 h post-exposure and analysed for viability, cell cycling and metabolites of ROS (p, m-, o-, tyrosines, 3-chlorotyrosine (cl-tyrosine), 8-hydroxy deoxyguanosine, (8-OH-dG) and RNS (3-nitrotyrosine). Results and conclusions: HLE cell-line exhibited a bi-phasic response in terms of cell viability, ROS and RNS profiles. At doses 0.5 Gy) a steady increase was observed in each metabolite. This response was observed irrespective of dose-rate. Among the associations tested, cl, p, m-tyrosine and 3-nitrotyrosine revealed changes (p < .05) at 5 Gy compared exclusively to 0.05 and 0.01 Gy. In addition, dose-rate related differences were observed. Overall, the data suggests that ROS and RNS are key events in radiation induced damage and this response is dependent on the dose and dose-rate of IR exposure

    Impact of Superoxide Dismutase Mimetic AEOL 10150 on the Endothelin System of Fischer 344 Rats.

    No full text
    Endothelin-1 is a potent vasoconstrictor and mitogenic peptide involved in the regulation of vasomotor tone and maintenance of blood pressure. Oxidative stress activates the endothelin system, and is implicated in pulmonary and cardiovascular diseases including hypertension, congestive heart failure, and atherosclerosis. Superoxide dismutase mimetics designed with the aim of treating diseases that involve reactive oxygen species in their pathophysiology may exert a hypotensive effect, but effects on the endothelin system are unknown. Our objective was to determine the effect of the superoxide dismutase mimetic AEOL 10150 on the basal endothelin system in vivo. Male Fischer-344 rats were injected subcutaneously with 0, 2 or 5 mg/kg body weight of AEOL 10150 in saline. Plasma oxidative stress markers and endothelins (bigET-1, ET-1, ET-2, ET-3) as well as lung and heart endothelin/nitric oxide system gene expressions were measured using HPLC-Coularray, HPLC-Fluorescence and RT-PCR respectively. AEOL 10150 reduced (p<0.05) the circulating levels of isoprostane (-25%) and 3-nitrotyrosine (-50%) measured in plasma 2h and 24h after treatment, confirming delivery of a physiologically-relevant dose and the potent antioxidant activity of the drug. The reduction in markers of oxidative stress coincided with sustained 24h decrease (p<0.05) of plasma levels of ET-1 (-50%) and ET-3 (-10%). Expression of preproET-1 and endothelin converting enzyme-1 mRNA were not altered significantly in the lungs. However preproET-1 (not significant) and ECE-1 mRNA (p<0.05) were increased (10-25%) in the heart. Changes in the lungs included decrease (p<0.05) of mRNA for the ET-1 clearance receptor ETB and the vasoconstriction-signaling ETA receptor (-30%), and an early surge of inducible nitric oxide synthase expression followed by sustained decrease (-40% after 24 hours). The results indicate that interception of the endogenous physiological flux of reactive nitrogen species and reactive oxygen species in rats impacts the endothelin/nitric oxide system, supporting a homeostatic relationship between those systems

    Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ) radiation.

    Get PDF
    BACKGROUND: There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. METHODS AND RESULTS: B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body) to Co60 (γ) (single dose 0, 0.5, and 2 Gy) at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy) at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05) in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05) after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008) relative to controls. Percent lesion area increased (p = 0.005) with age of animal, but not with radiation treatment. CONCLUSIONS: Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases

    Characterization of maternal plasma biomarkers associated with delivery of small and large for gestational age infants in the MIREC study cohort

    No full text
    OBJECTIVE:Neonatal morbidity and mortality can be influenced by maternal health status. Information on maternal and fetal biomarkers of adverse health outcomes is limited. This work aims at identifying maternal biomarkers associated with low and high birth weight for gestational age groups. DESIGN AND SETTINGS:Population-based prospective cohort study of the potential adverse health effects of exposure to environmental contaminants on pregnancy and infant health. METHODS:Third trimester maternal plasma samples (n = 1588) from a pregnancy cohort (Maternal-Infant Research on Environmental Chemicals Study, MIREC) were analyzed for changes in a target spectrum of biomarkers of vascular health (e.g., matrix metalloproteinases MMPs, vascular endothelial cell growth factor VEGF), inflammation (e.g. cellular adhesion molecules CAMs, cytokines, chemokines) by affinity-based multiplex protein array analyses. Multivariate logistic regression analyses were done to examine associations between target plasma biomarkers, maternal-infant characteristics, and birth weight outcomes assessed as small for gestational age (SGA) ≤10th percentile and large for gestational age (LGA) ≥90th percentile groups. RESULTS AND OUTCOMES:Our results revealed that maternal plasma biomarkers monocyte chemoattractant protein-1 MCP-1 (p<0.05, +ve) and VEGF (p<0.05, -ve) along with parity = 1 (p<0.01, -ve) and gestational hypertension (p<0.05, +ve) were associated with SGA births. Meanwhile, LGA was associated with maternal plasma VEGF (p<0.05, +ve) and MMP-9 (p<0.05, -ve) and gestational hypertension (p<0.01, +ve), pre-pregnancy body mass index (p<0.01, +ve), parity (p<0.05, +ve) and education (p<0.05, -ve). CONCLUSIONS:Third trimester maternal plasma biomarkers in combination with maternal health and socioeconomic characteristics can be useful in predicting SGA and LGA outcomes. Maternal vascular health and inflammatory status may contribute to both SGA and LGA births through distinct molecular mechanisms

    Lung and heart eNOS and iNOS mRNA.

    No full text
    <p>Mean ± SE, n = 6 animals per group. <b>A.</b> Lung eNOS: NS. <b>B.</b> Heart eNOS: NS. <b>C.</b> Lung iNOS: Two-way ANOVA. TIME x AEOL interaction, p < 0.001. Holm-Sidak: <b>a</b>, AEOL within 2 h: 0, 2 vs 5mg/kg, p < 0.001. <b>b</b>, AEOL within 24 h: 0 vs 5 mg/kg, p = 0.047. <b>D.</b> Heart iNOS: NS.</p

    Plasma levels of bigET-1, ET-1, ET-2 and ET-3 peptides in animals treated with AEOL.

    No full text
    <p>Mean ± SE, n = 6 animals per group. <b>A.</b> BigET-1: NS. <b>B.</b> ET-1: Two-way ANOVA. TIME main effect, p = 0.042. Holm-Sidak: <b>a</b>, 2 h vs 24 h, p < 0.05. AEOL main effect, p = 0.001. Holm-Sidak: <b>b</b>, 0, 2 vs 5 mg/kg, p < 0.001. <b>C.</b> ET-2: NS. <b>D.</b> ET-3: Two-way ANOVA. AEOL main effect, p = 0.014. Holm-Sidak: <b>c</b>, 2 vs 5 mg/kg, p = 0.004.</p
    corecore