408 research outputs found

    Micromirror total internal reflection microscopy for high-performance single particle tracking at interfaces

    Full text link
    Single particle tracking has found broad applications in the life and physical sciences, enabling the observation and characterisation of nano- and microscopic motion. Fluorescence-based approaches are ideally suited for high-background environments, such as tracking lipids or proteins in or on cells, due to superior background rejection. Scattering-based detection is preferable when localisation precision and imaging speed are paramount due to the in principle infinite photon budget. Here, we show that micromirror-based total internal reflection dark field microscopy enables background suppression previously only reported for interferometric scattering microscopy, resulting in nm localisation precision at 6 μ\mus exposure time for 20 nm gold nanoparticles with a 25 x 25 μ\mum2^{2} field of view. We demonstrate the capabilities of our implementation by characterizing sub-nm deterministic flows of 20 nm gold nanoparticles at liquid-liquid interfaces. Our results approach the optimal combination of background suppression, localisation precision and temporal resolution achievable with pure scattering-based imaging and tracking of nanoparticles at regular interfaces.Comment: 27 pages, 4 figure

    Potential Sand and Gravel Resources of the Mansfield 30 x 60 minute quadrangle

    Get PDF
    The Ohio Department of Natural Resources (ODNR), Division of Geological Survey has completed a reconnaissance map showing areas of mineable sand and gravel resources in the Mansfield, Ohio, 30 x 60 minute (scale 1:100,000) quadrangle. The main purpose of this map was to create a reconnaissance-level map that would show the potential for mining sand and gravel in this quadrangle. The map shows areas of surficial materials in increments of 10 feet and then differentiates sand, sand and gravel, and ice-contact deposits from finer grained materials, such as glacial till, lacustrine clay and silt, and alluvial materials. The sand and sand-and-gravel units include both surficial and buried outwash and valley train deposits and ice-contact deposits, such as kames, kame terraces, and eskers. To determine if a sand-and-gravel deposit was economically viable, this map shows the total thickness or accumulation of sand and gravel in the Mansfield 30 x 60-minute quadrangle.United States Geological Survey: National Cooperative Geologic Mapping Program, Great Lakes Geologic Mapping Coalitio

    Quantum Nonlocality without Entanglement

    Get PDF
    We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even if the observers are allowed any sequence of local operations and classical communication between the separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint measurement on these states and a measurement in which only local actions are permitted. This result implies the existence of separable superoperators that cannot be implemented locally. A set of states are found involving three two-state particles which also appear to be nonmeasurable locally. These and other multipartite states are classified according to the entropy and entanglement costs of preparing and measuring them by local operations.Comment: 27 pages, Latex, 6 ps figures. To be submitted to Phys. Rev. A. Version 2: 30 pages, many small revisions and extensions, author added. Version 3: Proof in Appendix D corrected, many small changes; final version for Phys. Rev. A Version 4: Report of Popescu conjecture modifie

    Coherent Control of Isotope Separation in HD+ Photodissociation by Strong Fields

    Full text link
    The photodissociation of the HD+ molecular ion in intense short- pulsed linearly polarized laser fields is studied using a time- dependent wave-packet approach where molecular rotation is fully included. We show that applying a coherent superposition of the fundamental radiation with its second harmonic can lead to asymmetries in the fragment angular distributions, with significant differences between the hydrogen and deuterium distributions in the long wavelength domain where the permanent dipole is most efficient. This effect is used to induce an appreciable isotope separation.Comment: Physical Review Letters, 1995 (in press). 4 pages in revtex format, 3 uuencoded figures. Full postcript version available at: http://chemphys.weizmann.ac.il/~charron/prl.ps or ftp://scipion.ppm.u-psud.fr/coherent.control/prl.p

    Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) increases rapidly in prevalence beyond age 60 and has been associated with increased risk for malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Because mutations in HSPCs often drive leukemia, we hypothesized that HSPC fitness substantially contributes to transformation from CHIP to leukemia. HSPC fitness is defined as the proliferative advantage over cells carrying no or only neutral mutations. If mutations in different genes lead to distinct fitness advantages, this could enable patient stratification. We quantified the fitness effects of mutations over 12 years in older age using longitudinal sequencing and developed a filtering method that considers individual mutational context alongside mutation co-occurrence to quantify the growth potential of variants within individuals. We found that gene-specific fitness differences can outweigh inter-individual variation and, therefore, could form the basis for personalized clinical management

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore