134 research outputs found

    Nonlinear coherent four-wave-mixing in optical microscopy

    Get PDF

    Seeing the vibrational breathing of a single molecule through time-resolved coherent anti-Stokes Raman scattering

    Full text link
    The motion of chemical bonds within molecules can be observed in real time, in the form of vibrational wavepackets prepared and interrogated through ultrafast nonlinear spectroscopy. Such nonlinear optical measurements are commonly performed on large ensembles of molecules, and as such, are limited to the extent that ensemble coherence can be maintained. Here, we describe vibrational wavepacket motion on single molecules, recorded through time-resolved, surface-enhanced, coherent anti-Stokes Raman scattering. The required sensitivity to detect the motion of a single molecule, under ambient conditions, is achieved by equipping the molecule with a dipolar nano-antenna (a gold dumbbell). In contrast with measurements in ensembles, the vibrational coherence on a single molecule does not dephase. It develops phase fluctuations with characteristic statistics. We present the time evolution of discretely sampled statistical states, and highlight the unique information content in the characteristic, early-time probability distribution function of the signal.Comment: 17 pages, 5 figure

    High Repetition Rate Femtosecond Lightsource for CARS Microscopy

    Get PDF

    Infrared chemical imaging through nondegenerate two-photon absorption in silicon-based cameras

    Full text link
    Chemical imaging based on mid-infrared (MIR) spectroscopic contrast is an important technique with a myriad of applications, including biomedical imaging and environmental monitoring. Current MIR cameras, however, lack in performance and are much less affordable compared to mature Si-based devices, which operate in the visible and near-infrared. Here we demonstrate fast MIR chemical imaging through non-degenerate two-photon absorption (NTA) in a standard Si-based charge-coupled device (CCD). We show that wide-field MIR images can be obtained at 100 ms exposure times using picosecond pulse energies of only a few fJ per pixel through NTA directly on the CCD chip. Because this on-chip approach does not rely on phase-matching, it is alignment-free and does not necessitate complex post-processing of the images. We emphasize the utility of this technique through chemically selective MIR imaging of polymers and biological samples, including MIR videos of moving targets, physical processes and live nematodes

    High-speed 2D and 3D mid-IR imaging with an InGaAs camera

    Full text link
    Recent work on mid-infrared (MIR) detection through the process of non-degenerate two-photon absorption (NTA) in semiconducting materials has shown that wide-field MIR imaging can be achieved with standard Si cameras. While this approach enables MIR imaging at high pixel densities, the low nonlinear absorption coefficient of Si prevents fast NTA-based imaging at lower illumination doses. Here we overcome this limitation by using InGaAs as the photosensor. Taking advantage of the much higher nonlinear absorption coefficient of this direct bandgap semiconductor, we demonstrate high-speed MIR imaging up to 500 fps with under 1 ms exposure per frame, enabling 2D or 3D mapping without pre- or post-processing of the image.Comment: 7 pages, 5 Figure

    Mapping Molecular Orientation with Phase Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy

    Full text link
    We demonstrate a phase sensitive, vibrationally resonant sum-frequency generation (PSVR-SFG) microscope that combines high resolution, fast image acquisition speed, chemical selectivity, and phase sensitivity. Using the PSVR-SFG microscope, we generate amplitude and phase images of the second-order susceptibility of collagen I fibers in rat tail tendon tissue on resonance with the methylene vibrations of the protein. We find that the phase of the second-order susceptibility shows dependence on the effective polarity of the fibril bundles, revealing fibrous collagen domains of opposite orientations within the tissue. The presence of collagen microdomains in tendon tissue may have implications for the interpretation of the mechanical properties of the tissue. [Image: see text
    corecore