48 research outputs found

    Mammalian Sugar Transporters

    Get PDF

    Angiotensin {II}-induced redox-sensitive {SGLT}1 and 2 expression promotes high glucose-induced endothelial cell senescence

    Get PDF
    High glucose (HG)-induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co-transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG-induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) before determination of senescence-associated beta-galactosidase activity, protein level by Western blot and immunofluorescence staining, mRNA by RT-PCR, nitric oxide (NO) by electron paramagnetic resonance, oxidative stress using dihydroethidium and glucose uptake using 2-NBD-glucose. HG increased ECs senescence markers and oxidative stress, down-regulated eNOS expression and NO formation, and induced the expression of VCAM-1, tissue factor, and the local angiotensin system, all these effects were prevented by empagliflozin. Empagliflozin and LX-4211 (dual SGLT1/2 inhibitor) reduced glucose uptake stimulated by HG and H2O2 in ECs. HG increased SGLT1 and 2 protein levels in cultured ECs and native endothelium. Inhibition of the angiotensin system prevented HG-induced ECs senescence and SGLT1 and 2 expression. Thus, HG-induced ECs ageing is driven by the local angiotensin system via the redox-sensitive up-regulation of SGLT1 and 2, and, in turn, enhanced glucotoxicity

    SGLT2 is not expressed in pancreatic α- and β-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans.

    Get PDF
    OBJECTIVE: Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i), or gliflozins, are anti-diabetic drugs that lower glycemia by promoting glucosuria, but they also stimulate endogenous glucose and ketone body production. The likely causes of these metabolic responses are increased blood glucagon levels, and decreased blood insulin levels, but the mechanisms involved are hotly debated. This study verified whether or not SGLT2i affect glucagon and insulin secretion by a direct action on islet cells in three species, using multiple approaches. METHODS: We tested the in vivo effects of two selective SGLT2i (dapagliflozin, empagliflozin) and a SGLT1/2i (sotagliflozin) on various biological parameters (glucosuria, glycemia, glucagonemia, insulinemia) in mice. mRNA expression of SGLT2 and other glucose transporters was assessed in rat, mouse, and human FACS-purified α- and β-cells, and by analysis of two human islet cell transcriptomic datasets. Immunodetection of SGLT2 in pancreatic tissues was performed with a validated antibody. The effects of dapagliflozin, empagliflozin, and sotagliflozin on glucagon and insulin secretion were assessed using isolated rat, mouse and human islets and the in situ perfused mouse pancreas. Finally, we tested the long-term effect of SGLT2i on glucagon gene expression. RESULTS: SGLT2 inhibition in mice increased the plasma glucagon/insulin ratio in the fasted state, an effect correlated with a decline in glycemia. Gene expression analyses and immunodetections showed no SGLT2 mRNA or protein expression in rodent and human islet cells, but moderate SGLT1 mRNA expression in human α-cells. However, functional experiments on rat, mouse, and human (29 donors) islets and the in situ perfused mouse pancreas did not identify any direct effect of dapagliflozin, empagliflozin or sotagliflozin on glucagon and insulin secretion. SGLT2i did not affect glucagon gene expression in rat and human islets. CONCLUSIONS: The data indicate that the SGLT2i-induced increase of the plasma glucagon/insulin ratio in vivo does not result from a direct action of the gliflozins on islet cells

    SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice.

    Get PDF
    金沢大学医薬保健研究域医学系Sodium-glucose cotransporter (SGLT) 2 inhibitors increase urinary glucose excretion (UGE), leading to blood glucose reductions and weight loss. However, the impacts of SGLT2 inhibition on energy homeostasis and obesity-induced insulin resistance are less well known. Here, we show that empagliflozin, a SGLT2 inhibitor, enhanced energy expenditure and attenuated inflammation and insulin resistance in high-fat-diet-induced obese (DIO) mice. C57BL/6J mice were pair-fed a high-fat diet (HFD) or a HFD with empagliflozin for 16 weeks. Empagliflozin administration increased UGE in the DIO mice, whereas it suppressed HFD-induced weight gain, insulin resistance, and hepatic steatosis. Moreover, empagliflozin shifted energy metabolism towards fat utilization, elevated AMP-activated protein kinase and acetyl-CoA carbolxylase phosphorylation in skeletal muscle, and increased hepatic and plasma fibroblast growth factor 21 levels. Importantly, empagliflozin increased energy expenditure, heat production, and the expression of uncoupling protein 1 in brown fat and in inguinal and epididymal white adipose tissue (WAT). Furthermore, empagliflozin reduced M1-polarized macrophage accumulation while inducing the anti-inflammatory M2 phenotype of macrophages within WAT and liver, lowering plasma TNFα levels and attenuating obesity-related chronic inflammation. Thus, empagliflozin suppressed weight gain by enhancing fat utilization and browning and attenuated obesity-induced inflammation and insulin resistance by polarizing M2 macrophages in WAT and liver

    Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice

    No full text
    In the EMPA-REG OUTCOME trial, empagliflozin, a potent and specific inhibitor of the sodium glucose co-transporter 2, showed impressive benefits on cardiovascular outcome in patients with Type 2 diabetes.1 Empagliflozin reduced three-point primary composite outcome (cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke) by 14%, which was mainly attributed to a 38% relative risk reduction in cardiovascular death.1 A 35% relative risk reduction in hospitalization for heart failure and a 32% relative risk reduction in all-cause mortality was also reported.1 However, the underlying mechanisms explaining these beneficial outcomes are yet to be elucidated. Deprivation of cardiac energy, characterized by a decreased cardiac phosphocreatine-to-ATP ratio (PCr/ATP), has been proposed to play a major role in the development of heart failure.2 Empagliflozin increases plasma ketone body levels and it has therefore been hypothesized that a shift in energy substrate metabolism towards ketones or an increased availability of ketones as add-on fuel could explain the positive cardiovascular outcomes in the EMPA-REG study.3 To test the ‘fuel hypothesis’, we investigated whether an increase in plasma ketones by empagliflozin was accompanied by an increase in cardiac PCr/ATP. We administered a single dose of empagliflozin in fasting db/db mice, to simulate a situation in which plasma ketone levels are immediately increased. This acute experimental design allows investigating the effect of alterations in fuel availability on changes in cardiac PCr/ATP ratio without interference from other factors, such as cardiac remodelling after long-term treatment. Using 31P magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI), we measured in vivo cardiac PCr/ATP and function, respectively
    corecore