26 research outputs found

    Which physical attributes discriminate between faster and slower elite cricket pace bowlers of each sex? (vol 24, pg S37, 2021)

    No full text
    Which physical attributes discriminate between faster and slower elite cricket pace bowlers of each sex? (vol 24, pg S37, 2021

    Data Engineering

    No full text
    Although today's computers provide huge amounts of main memory, the ever-increasing load of large data servers, imposed by resource-intensive decision-support queries and accesses to multimedia and other complex data, often leads to memory contention and may result in severe performance degradation. Therefore, careful tuning of memory mangement is crucial for heavy-load data servers. This paper gives an overview of self-tuning methods for a spectrum of memory management issues, ranging from traditional caching to exploiting distributed memory in a server cluster and speculative prefetching in a Web-based system. The common, fundamental elements in these methods include on-line load tracking, near-future access prediction based on stochastic models and the available on-line statistics, and dynamic and automatic adjustment of control parameters in a feedback loop. 1 The Need for Memory Tuning Although memory is relatively inexpensive and modern computer systems are amply equipped with..

    Gilz-activin a as a novel signaling axis orchestrating mesenchymal stem cell and Th17 cell interplay

    Get PDF
    Mesenchymal stem cells (MSC) are highly immunosuppressive cells able to reduce chronic inflammation through the active release of mediators. Recently, we showed that glucocorticoid-induced leucine zipper (Gilz) expression by MSC is involved in their therapeutic effect by promoting the generation of regulatory T cells. However, the mechanisms underlying this pivotal role of Gilz remain elusive. Methods and Results In this study, we have uncovered evidence that Gilz modulates the phenotype and function of Th1 and Th17 cells likely by upregulating the level of Activin A and NO2 secreted by MSC. Adoptive transfer experiments sustained this Gilz-dependent suppressive effect of MSC on Th1 and Th17 cell functions. In immunoregulatory MSC, obtained by priming with IFN-γ and TNF-α, Gilz was translocated to the nucleus and bound to the promoters of inos and Activin βA to induce their expression. The increased expression of Activin A directly impacted on Th17 cells fate by repressing their differentiation program through the activation of Smad3/2 and enhancing IL-10 production. Conclusion Our results reveal how Gilz controls inos and Activin βA gene expression to ultimately assign immunoregulatory status to MSC able to repress the pathogenic Th17 cell differentiation program and uncover Activin A as a novel mediator of MSC in this process
    corecore