23 research outputs found

    Realisation of a low frequency SKA Precursor: The Murchison Widefield Array

    Get PDF
    The Murchison Widefield Array is a low frequency (80-300 MHz) SKA Precursor, comprising 128 aperture array elements distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper will focus on a brief discussion of the as-built MWA system, highlighting several novel characteristics of the instrument, and a brief progress report (as of June 2012) on the final construction phase. Practical completion of the MWA is expected in November 2012, with commissioning commencing from approximately August 2012 and operations commencing near mid 2013. A brief description of recent science results from the MWA prototype instrument is given

    Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array

    Get PDF
    Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z = 0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ∼700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin[superscript −2]. The radio lobes have one of the steepest spectral indices yet observed: α = −2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10[superscript −7] Mpc[superscript −3] and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.National Science Foundation (U.S.) (Grant AST CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array

    Get PDF
    We present new wide-field observations of Centaurus A (Cen A) and the surrounding region at 118 MHz with the Murchison Widefield Array (MWA) 32-tile prototype, with which we investigate the spectral-index distribution of Cen A's giant radio lobes. We compare our images to 1.4 GHz maps of Cen A and compute spectral indices using temperature–temperature plots and spectral tomography. We find that the morphologies at 118 MHz and 1.4 GHz match very closely apart from an extra peak in the southern lobe at 118 MHz, which provides tentative evidence for the existence of a southern counterpart to the northern middle lobe of Cen A. Our spatially averaged spectral indices for both the northern and southern lobes are consistent with previous analyses, however we find significant spatial variation of the spectra across the extent of each lobe. Both the spectral-index distribution and the morphology at low radio frequencies support a scenario of multiple outbursts of activity from the central engine. Our results are consistent with inverse-Compton modelling of radio and gamma-ray data that support a value for the lobe age of between 10 and 80 Myr.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant PHY-0835713)National Science Foundation (U.S.) (Grant CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0908884)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    Get PDF
    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator

    Get PDF
    Experiments were performed with prototype antenna tiles for the Mileura Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the widefield, wideband properties of their design and to characterize the radio frequency interference (RFI) between 80 and 300 MHz at the site in Western Australia. Observations acquired during the six month deployment confirmed the predicted sensitivity of the antennas, sky-noise dominated system temperatures, and phase-coherent interferometric measurements. The radio spectrum is remarkably free of strong terrestrial signals, with the exception of two narrow frequency bands allocated to satellite downlinks and rare bursts due to ground-based transmissions being scattered from aircraft and meteor trails. Results indicate the potential of the MWA-LFD to make significant achievements in its three key science objectives: epoch of reionziation science, heliospheric science, and radio transient detection.Comment: Accepted by AJ. 17 pages with figure

    Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Recent observations with the Murchison Widefield Array at 185~MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z=0.0178z = 0.0178) radio galaxy associated with NGC\,1534. The diffuse emission presented here is the first indication that NGC\,1534 is one of a rare class of objects (along with NGC\,5128 and NGC\,612) in which a galaxy with a prominent dust lane hosts radio emission on scales of \sim700\,kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with disks. NGC1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2\,mJy\,arcmin2^{-2}. The radio lobes have one of the steepest spectral indices yet observed: α=2.1±0.1\alpha=-2.1\pm0.1, and the core to lobe luminosity ratio is $Peer reviewe

    Low-Frequency Observations of the Moon with the Murchison Widefield Array

    Get PDF
    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system

    Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the murchison widefield array

    Get PDF
    Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z=0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ~700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin-2. The radio lobes have one of the steepest spectral indices yet observed: α = -2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10-7 Mpc-3 and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle
    corecore